

The BioGrace Excel tools

General structure and comparison

- Susanne Köppen
- IFEU
- Public workshop
- 10 June 2014, Vienna
- •

Purpose of the tools

- Create transparency regarding the calculation of
 - default values
 - →related to EU-RED and to Report on solid and gaseous biomass
- Allow correct and (relatively) easy actual calculations
 - Change input values
 - Modify pathways
 - Create new pathways
- Enable harmonised GHG calculation under
 - regulations for biofuels as well as electricity and / or
- heat production

Slide 2 Public workshop 10 June 2014, Vienna

BIOGRACE 11 Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

Directory

BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

Directory of pathways

www.biograce.net

Intelligent Energy 💽 Europ

About Directory

Version 4c for Compliance

INTELLIGENT ENERGY

EUROPE

- 1 Ethanol from sugar beet
- 2 Ethanol from wheat (process fuel not specified)
- 3 Ethanol from wheat (lignite CHP)
- 4 Ethanol from wheat (natural gas steam boiler)
- 5 Ethanol from wheat (natural gas CHP)
- 6 Ethanol from wheat (straw CHP)
- 7 Ethanol from corn (community produced) (natural gas CHP)
- 8 Ethanol from sugarcane
- 9 FAME from rape seed
- 10 FAME from sunflower
- 11 FAME from soybean
- 12 FAME from palm oil (process not specified)
- 13 FAME from palm oil (methane capture at oil mill)
- 14 FAME from waste vegetable or animal oil

Calculation of direct land use change (LUC) Calculation of Improved Agricultural Management Calculation of N₂O field emissions according to IPCC Tier 1

About

Standard values User defined standard values User specific calculations

15 HVO from rape seed

- 16 HVO from sunflower
- 17 HVO from palm oil (process not specified)
- 18 HVO from palm oil (methane capture at oil mill)
- 19 PVO from rape seed
- 20 CNG from biogas from municipal organic waste
- 21 CNG from biogas from wet manure
- 22 CNG from biogas from dry manure

www.biograce.net

o-funded by the Intelligent Energy Euro gramme of the European L

Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass BIOGRACE

Directory

Harmonised Greenhouse Gas Calculations

for Electricity, Heating and Cooling from Biomass

Directory of pathways

- 1 Wood chips from forest residues
- 2 Wood chips from short rotation forests
- 3 Wood chips from round wood
- 4 Wood chips from industry residues
- 5 Wood briguettes or pellets from forest residues

BIOGRACE II

- 6 Wood briquettes or pellets from short rotation forestry
- 7 Wood briquettes or pellets from roundwood
- 8 Wood briguettes or pellets from wood industry residues
- 9 Agricultural residues

Calculation of direct land use change (LUC) Calculation of Improved Agricultural Management Calculation of N₂O field emissions according to IPCC Tier 1 Calculation of N2O field emissions with GNOC Calculation of net heat and electricity efficiencies Calculation of default values for co-digestion

About

Standard values User defined standard values

IU JUNE ZUIA, VIENNA

10 Pellets from straw

- 11 Pellets from bagasse
- 12 Palm kernel meal
- 13 Biogas from wet manure
- 14 Biogas from maize
- 15 Biogas from biowaste
- 16 Biomethane from wet manure
- 17 Biomethane from maize 18 Biomethane from biowaste
- Easy direction to other sheets
- One calculation sheet per pathway

UROP

LIGENT ENERGY

- Additional sheets:
 - LUC
 - e_{sca}
 - N₂O field emissions
 - Standard values
 - (Final conversion only)

ce.net

- (Net efficiencies)
- (Co-digestion)

Version 1.0.6 - draft in progress - March 2014

Directory

About

BIOGRACE II

Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

Production of Ethanol from Sugarbeet (steam from NG boiler)

Overview Results

•

All results in g CO 1 I Mil cusard	Non- allocated results	Allocatio: factor	Allocated results	Total	Actual/ Dafault	Default values RED Annex V.D	
Cultivation e ₈₀				11,5	A	12	
Cultivation of sugarbeet	16,08	71,3%	11,46			11,54	
Processing ep				26,3	A	26	
Ethanol plant	36,82	71,3%	26,26			26,42	
Transport e _{td}				2,3	A	2	
Transport of sugarbeet	1,11	71,3%	0,79			0,84	r osults
Transport of ethanol to de	0,60	100,0%	0,60			1,10	results
Transport to filling station	0,93	100,0%	0,93			0,44	
Land use change e	0,0	71,3%	0,0	0.0		0	
Bonus or e _{soa}	0,0	100,0%	0,0	0,0		0	
e _{oor} + e _{oos}	0,0	100,0%	0,0	0.0		0	
Totals	55,6			40,1		40	
Calculation per p	hase T	rack changes: (л	When using the The rules are	iis GHG calcu included in the	lation tool, the BioGrace zip file in which you download	
Cultivation of sugar	beet			Quantity of	product	Ca	
	Yield			Yield		E	
	Sugar beet	68.860 kg) ha' ¹ year'	280.60	5 MJsaar keel	ha ^{rt} year ^{it} i	
	- Moisture content	75.0%		1.0	00 MJ7MJ		II Coloulation
				0.4	51 kg	M.L.,	
					OT Kyseeseen		
	Diesel	6.331 N	ld ha ^{rt} uear ^{it}				per phase
	Dirbei	0.001	iona year				
	Agro chemicals						
	N-fertiliser (kg N)	119,7 kg) N haif year f				
	Manure	0,0 kg) N ha' ¹ year ¹				
Slide 5 •		<u> </u>					www.biograce.net
	10 June 2014,	Vienna					

INTELLIGENT ENERGY

Е

EUROP

ww

•

List of standard values

STANDARD VALUES					
param	eter: GWP				GHG emissio
	unit: gCO _{2,eq} /	g gCO₂/kg	gCH₄/kg	gN₂O/kg	gCO _{2-eq} /kg
Global Warming Potentials (GWP's)					
CO2	1		 		
CH₄	25				
N ₂ O	298				
Aaro inputs			 	 	<u> </u>
N-fertiliser (kg N)		3794,0	7,93	7,3150	6172,1
P2O5-fertiliser (kg P2O5)		991,2	1,40	0,0532	1042,1
K2O-fertiliser (kg K2O)		547,9	1,60	0,0129	591,8
CaO-fertiliser (calculated as kg CaO)		65,2	0,12	0,0029	69,0
CaO-fertiliser (calculated as kg CaCO₃)		36,5	0,07	0,0016	38,7
Pesticides		10371,8	28,44	1,7145	11593,8
Seeds- barley		176,8	0,39	0,4005	305,9
Seeds- corn		176,8	0,39	0,4005	305,9
Seeds- corn (whole plant)		176,8	0,39	0,4005	305,9
Seeds- cottonseed	<u>\</u>				0,0
Seeds- jatropha			1		0.0

Public workshop Slide 9 10 June 2014, Vienna

www.biograce.net

NERGY

E

0

User defined standard values

User Defined Standard Values					
parameter: unit:	Comments	gCO₂/kg	gCH₄/kg	(gN _z O/kg	GHG emissio gCO _{2-eq} /kg
User defined standard values					
Example 1 (diesel from standard values)					0
Example 2 (methanol from standard values)					0
Example 3 (N-fertiliser from standard values)		2827,0	8,68	9,6418	5917,2313
		2000.0	0.00	0.0000	2000
Urea		1707.0	0,00	0,0000	1707
Compound		5376,0	0,00	0,0000	5376
					0

Slide 10 Public workshop 10 June 2014, Vienna

www.biograce.net

ENERGY

•

Different units

Results related to different units

Slide 11 Public workshop 10 June 2014, Vienna

www.biograce.net

IGENT ENERGY

E

U

ROP

Elements for verification

When actual calculations are done:

- The Biograce calculation rules must be followed
- Track changes must be switched on:
 - Highlights all changes
 - Shows editor's name and old values in the comment field

	2	When using this GHG calculation tool, the BioGrace calculation rules must be respected. The rules are included in the zip fit (containing the complete tool) and also at www.BioGrace.net	on le			
		Track changes: ON	Forest Yield	residues collection		
	•		Fores Moist	stry residues ure content	1,00 M	Old value: 0,5 Date: 10-23-2013 Author:
	•		Ener Diese	gy consumption	0,0120 [°] N	SusanneKoeppen
	•		CH₄ a	and N_2O emissions from use of die	sel (residue collection)
Slide 12	•	Public workshop 10 June 2014, Vienna			ww	w.biograce.ne

Differences between tools

- Final use of energy carriers
 - BG I: Liquid and gaseous biofuels for transport
 - BG II: Solid, gaseous (and liquid) bioenergy carriers for electricity, heat and cooling

➔ Tools do not mirror the EU regulation / report!

- Final reference unit
 - BG I: MJ energy carrier (transport fuel)
 - BG II: MJ final energy (heat, electricity)
 - default values refer to MJ energy carrier
 - \rightarrow user always has to include own / actual conversion efficiency

Slide 14 Public workshop 10 June 2014, Vienna

BIOGRACE II Harmonised Greenhouse Gas Cale for Electricity, Heating and Coolin	culations og from Biomass	V ROPE
BG II: Gener	al settings	
Main output Electricity Heat Cooling Electricity and heat	Conversion efficiencies Electrical efficiency 15,0% Thermal efficiency 60,0% 56,0% 56,0% Temp of useful heat (°C) 150,0 Please note! 150,0	Pathway configuration Heat provision in pellet production: Natural gas boiler Transport distance (pellets): 1 - 500 km
Without filling this in, NO GHG emissions reductions will be calculated !	Please note ! When starting to use this Excel tool, you should first enter values in the the conversion efficiencies and by choosing the most appropriate pathw distances can always be adjusted to actual values further down this cale. If you do not select the main output and enter conversion efficiencies, the electricity, heat or cooling, which is the purpose of this tool. The tool car result in g CO2,eq per MJ of energy carrier and (in the info boxes in colliquid biomass.	"General settings" by choosing the main output, by entering ay configuration (note that boiler/CHP settings and transport culation sheet). here will be no GHG emission reduction calculated for n then be used for information purposes and will give a umn N) in g CO2,eq per kg of energy carrier for solid and
Slide 15 Public workshop 10 June 2014, Vienna	Do not show this screen any more	

•

Overview Results

-	-
Enerau	carrier

All results in	Non- allocated	Total	Actual/	
9 CO tore 1 Md vertables	results	(allocated results)	Default	
Cultivation e _{so}		0,0	A	
Feedstock is a residue	0,00	0,00		
Processing en		2,85	Α	
Forest residues collection	1,96	1,96		
Forest residues seasoning	0,00	0,00		
Chipping	0,89	0,89		
Transport en		3,26	A	
Transport of wood chips	3,26	3,26		
Land use change e	0,0	0,0		
Bonus or e	0,0	0,0		
east + east	0,0	0,0		
Totals	6,1	6,1		

Final conversion based on actual efficiency

Differences between tools

- Differences in methodology
 - BG I: Allocation of co-products based on lower heating

values;

credits for surplus electricity from CHP (e_{ee})

- BG II: Allocation of co-products based on lower heating values;

Allocation in CHP based on exergy

➔ two different allocation factors

Slide 17 Public workshop 10 June 2014, Vienna

BG I: Allocation between products and co-products

Ethanol plant

Public workshop

10 June 2014, Vienna

71,3% to ethanol 28,7% to Sugar beet pulp Allocation of by-products and main products in production chain: Lower Heating Value

Use of CHP during pathway:

- Credit for surplus electricity

www.biograce.net

Slide 18

Allocation factors

100,0% to electricity

100.0% to heat

Production chain

BG II: Two different allocations Allocation factors & references Allocation of by-products and main products in production chain: 100,0% to energy carrier **Lower Heating Value** 0,0% to co-product(s)

Allocation of electricity and heat (CHP) according to Carnot efficiency:

$$EC_{el} = \frac{E}{\eta_{el}} \left(\frac{C_{el} \cdot \eta_{el}}{C_{el} \cdot \eta_{el} + C_h \cdot \eta_h} \right)$$

(along and at the end of pathway)

Public workshop Slide 19 10 June 2014, Vienna

CHP

. .

.

BIOG Har for	monised Green Electricity, Hea	nouse Gas Ca ting and Cooli	iculati ng fror	ons n Biomass		
٥		Two	1:54	orant al	locations	
•	DG II.			erent al	iocations	
•						
•						
•						
•						
•						
•						
•						
•						
Energy carrier			_		Final energy	Allocation factor & references
All results in	Non- allocated	lotal	Actual/	Default values	CH ₄ and N ₂ O emissions at final conversion	Allocation factors
g CO _{2,eq} / MJ _{Wood chips}	results	(allocated results)	Default	EC report	0,4 g CO _{2,eq} / MJ _{Wood chips}	Production chain
Cultivation e _{ec}		0,0	A	To be published	electricity Real	100,0% to energy carrier
Peedstock is a residue	0,00	0,00		To be published	All results in g LU 2, per no as indicated	0,0% to co-product(s)
Forest residues collection	1.96	1.96	~	To be published	factor capitite factor capita	100.0% to electricity
Forest residues seasoning	0.00	0.00		To be published		100.0% to best
Chinning	0.89	0.89			control des control des	100,078 to field
Transport o	0,00	3.26	Δ	To be published	0.0	Fossil fuel
Transport of wood chips	3.26	3.26		To be published	ver MJ electr	
Land use change e	0,0	0,0				77 g CO _{2 co} /MJ _{base}
Bonus or e _{soa}	0,0	0,0			GHG emis, reduction	g CO _{2 eo} /MJ _{control}
eccr + eccs	0,0	0,0			Electricity Heat	
Totals	6,1	6,1			De M	

Public workshop Slide 20 10 June 2014, Vienna • •

II

www.biograce.net

INTELLIGENT ENERGY EUROPE

Differences between tools

- Differences in methodology
 - BG I: Emissions from use of bioenergy carrier are zero
 - BG II: CO₂ emissions from use are zero
 - → CH_4 and N_2O emissions from final conversion are calculated

Slide 21 Public workshop 10 June 2014, Vienna

BG II: Emissions from final conversion

LIGENT ENERGY

EUROP

Differences between tools

- Elements that will be included in BG I in next update
 - comment boxes with background information on calculation ways
 - variations included in drop downs (e.g. transport distances, process energy carriers)

Slide 23 Public workshop 10 June 2014, Vienna

•

BG II: Background information

Forest residues collection			Quant	ntity of product Calculated emissions					
Yield					E	missions p	er MJ wood	chips	
Forestr	y residues	1,0 MJ _{FR} / MJ _{FR}	1,00	MJ _{FR} / MJ _{FR, Input}		g CO ₂	g CH₄	g N ₂ O	g CO _{2, eq}
Moistu	Help for the cell that is selected			/MJ _{Wood chips}					
Energ Diesel	246149	3			•	1,94	0,00	0,00	1,94
CH₄ ar	Calculating the CH4 emissions The CH4 emissions per MJ of final product are calcu Result = [Amount of input] * [Pathway efficiency	latied in the following way: up to this step] * [CH4 emission coefficie	ent of input] /		Total	0,00 194	0,00 0,00	0,00 0,00	0,02 1,96
	[Overall pathway efficiency]					Result	g CO _{2,} ,	q / MJ _{Chips}	1,96
a ,([Amount of input]: MJ_input / MJ_(material production of input): MJ_(material production of input): MJ_(material production of input): g CH4 / MJ_ [CH4 emission coefficient of input]: g CH4 / MJ_ [Overall pathway efficiency]: MJ_(final production of the calculation result is g CH4 	duced in this step) rial produced in this step) / MJ_(first feed input) / MJ_(first feedstock in pathway) 14 / MJ_(final product).	lstock in pathw	ay)					
1				on for	Help box calculati mulas / s	tes w ion st specif	ith inf rateg fic un	forma ies a its us	ation nd sed
	Do not show this help box any more		Close						
Sli	ide 24 Public workshop	o ∕ienna				N	ww.bio	ograce	.net

NERGY

Ε

Co-funded by the Intelligent Energy Europe Programme of the European Union

Thank you for your attention

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

Public workshop Slide 25 10 June 2014, Vienna