

The BioGrace Excel GHG calculation tool – Other parts

John Neeft Agentschap NL Public workshop Utrecht March 21, 2011

BIDGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

: Contents

- 1. Introduction
- 2. Land use change
- 3. Improved agricultural management
- 4. CO₂ storage or replacement
- 5. New items in Public version 4
 - User manual
 - Calculation rules
 - Track changes
- 6. New item for Public version 5:
 - Calculation of N₂O field emissions
- 7. BioGrace as a voluntary scheme
- Slide 2 Public workshop Utrecht March 21, 2011

: Contents

- 1. Introduction
- 2. Land use change
- 3. Improved agricultural management
- 4. CO₂ storage or replacement
- 5. New items in Public version 4
 - User manual
 - Calculation rules
 - Track changes
- 6. New item for Public version 5:
 - Calculation of N₂O field emissions
- 7. BioGrace as a voluntary scheme
- Slide 5 Public workshop Utrecht
 - March 21, 2011

Land Use Change

General principles :

 Annex V of the RED gives the general calculation guidelines (part C, point 7):

 $e_l = (CS_R - CS_A) \times 3,664 \times 1/20 \times 1/P - e_B$ (1)

- 2. Calculation rules are explained in the following the decision
 - 2010/335/EU: Commission Decision of 10 June 2010 on guidelines
 - for the <u>calculation of land use carbon stocks</u> for the purpose of Annex V of Directive 2009/28/EC.
 - This communication gives:
 - Consistent representation of land carbon stocks
 - Calculation rules
 - Default data for applying this formula (tables)

Slide 6 Public workshop Utrecht

• March 21, 2011

: Land Use Change

General principles :

Two types of calculation are possible :

1. Calculation using default value

$$CS_i = C_{VEG} + SOC_{ST} * F_{LU} * F_{MG} * F_{I}$$

2. Calculation using actual value for C_{VEG} and Soil Organic Carbon (SOC).

$$CS_i = C_{VEG} + SOC$$

Slide 7 Public workshop Utrecht March 21, 2011

Step 1 : declare LUC in your pathway

- Step 2: Go to the LUC excel sheet and read through this
- sheet. Get the Commission Decision 2010/335/EU with you.
- **Step 3 :** Choose the type of calculation : default or actual and fill the appropriate white cells.

Step 4 (default calculation) : use EC decision to fill out data

•

March 21, 2011

Step 4 (actual calculation) : mind filling detailed information on the sources of the SOC data used. •

60 61 62 63	Type of data use More detail information	Field measuremen	measurem t from a 3 year campa National Insti	ents aign, 100 tute	plots, carried out by th	e Ex :
66	If using data from other methods than n	neasurements :				
67	Please confirm that they take into account	:				
68	cli <mark>n</mark> ate	У	es			
69	soil ype	У	es			
70	land over	У	es			
71	land management and in uts.	У	es			
72	Deputting early at ask in sail-	000 -	70.2 ton C / ha		000 - 100	10 top C / ha
73	Resulting carbon stock in vocatation	SUCA =	10,2 ton C / ha		SUCR = 102	c, o ton C / ha
74	Resulting carbon stock in vegetation		70.2 ton C / ha		CS 120	2.0 ton C / ha
76	Resulting land Use Change	ei =	20.5 ton CO ₂ ha ⁻¹	vear ⁻¹	00R - 102	.,0 101 07 114
	60 61 62 63 64 66 67 68 69 70 71 72 73 74 75 76	60 Type or data use More detail information 62 63 64 66 67 Please confirm that they take into account 68 69 70 1 land cover 71 1 land management and in uts. 72 73 Resulting carbon stock in soils 74 Resulting land Use Change	60 Type of data use More detail information Field measurement 61 If using data from other methods than measurements : 66 If using data from other methods than measurements : 67 Please confirm that they take into account : 68 clinate y 69 soil ype y 70 land over y 71 land management and in uts. y 72 resulting carbon stock in soils SOC _A = 74 Resulting carbon stock in vegetation C _{veg-A} = 75 CS _A = CS _A = 76 Resulting land Use Change e ₁ =	60 Type of data use measurement More detail information Field measurement from a 3 year campa National Institution 61 If using data from other methods than measurements : 66 If using data from other methods than measurements : 77 Please confirm that they take into account : 68 clinate yes 69 soil ype yes 70 land cover yes 71 land management and in uts. yes 72 resulting carbon stock in soils SOC _A = 70.2 ton C / ha 73 Resulting carbon stock in vegetation Cveg.A= 0.0 ton C / ha 75 CS _A = 70.2 ton C / ha CS _A = 70.2 ton C / ha 76 Resulting land Use Change e1 = 20.5 ton CO ₂ ha ⁻¹	60 Type of data use measurements More detail information Field measurement from a 3 year campaign, 100 National Institute 64 If using data from other methods than measurements : 66 If using data from other methods than measurements : 77 Please confirm that they take into acc unt : 68 cli ate yes 69 soil ype yes 70 land over yes 71 land management and in uts. yes 72 resulting carbon stock in soils SOC _A = 70.2 ton C / ha 73 Resulting carbon stock in vegetation C _{veg-A} = 0.0 ton C / ha 75 CS _A = 70.2 ton C / ha 76 Resulting land Use Change e ₁ = 20,5 ton CO ₂ ha ⁻¹ year ⁻¹	Image: Second state use Image: Second state use Image: Second state use Image: Second state use If using data from other methods than measurements : Field measurements : Field measurements : If using data from other methods than measurements : Please confirm that they take into acc unt : Image: Second state use If using data from other methods than measurements : Please confirm that they take into acc unt : Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Image: Second state use Imade: Second state use Secon

- Step 5 : Check in the biofuel pathway that the LUC value
- is there. Please, also check that no Improved agricultural
- management is declared.

e_b bonus for degraded and contaminated lands :

- A specific line exits within the LUC module of each pathway.
- Explanations on how to use are to be taken from the RED

Land use chang	e, including bonus for produ e, L Does land use change occur?	ction on non-agriculture or degraded land and use change	d		
			Emissions	per MJ ethanol	N 3452
	Hermonical and the second	0.00	g CO ₂	g CH ₄ g N ₂ O	g CO _{2.eq}
	Resulting faile use change		0,00	0,00	0,00
Improved agric	ultural management e _{ssa} S	(a) was not in use for agriculture or any o (b) falls into one of the following categorie (i) severely degraded land, including suc (ii) heavily contaminated land. The bonus of 29 gCO _{2ec} /MJ shall apply for use, provided that a steady increase in ca under (i) are ensured and that soil contam	ther activity in January 2008; and es: ch land that was formerly in agricultural use; a period of up to 10 years from the date of c rbon stocks as well as a sizable reduction in ination for land falling under (ii) is reduced.	onversion of the lar erosion phenomen	nd to agricultural a for land falling
Slide 13	Public workshop Utr March 21, 2011	echt	www.	biograce.n	et

: Contents

- 1. Introduction
- 2. Land use change
- 3. Improved agricultural management
- 4. CO₂ storage or replacement
- 5. New items in Public version 4
 - User manual
 - Calculation rules
 - Track changes
- 6. New item for Public version 5:
 - Calculation of N₂O field emissions
- 7. BioGrace as a voluntary scheme
- Slide 14 Public workshop Utrecht March 21, 2011

: Improved Agricultural Management

- Annex V of the RED has a specific term for carbon stock accumulation thanks to improved practices, but does not give much more explanations on how to calculate it
 - 2. Calculation rules from the Commission Decision can serve as guidelines for making first level calculations
 - 3. As for LUC, actual data can be used to assess them
- In the BioGrace tool, an e_{sca} sheet exist to carry out the calculation
- 5. This sheet is build on the same frame than the LUC sheet
- Don't declare e_{sca} when LUC are already declared (double counting)
- Slide 15 Public workshop Utrecht March 21, 2011

: Contents

- 1. Introduction
- 2. Land use change
- 3. Improved agricultural management
- 4. CO₂ storage or replacement
- 5. New items in Public version 4
 - User manual
 - Calculation rules
 - Track changes
- 6. New item for Public version 5:
 - Calculation of N₂O field emissions
- 7. BioGrace as a voluntary scheme
- Slide 16 Public workshop Utrecht
 - March 21, 2011

Intelligent Energy
Europe

CO₂ storage or replacement

General principles :

- Annex V of the RED has specific terms for carbon stock accumulation thanks to improved practices, but does not give much more explanations
- In the BioGrace tool, two modules exist to declare these technological solutions. The value in g CO₂/MJ has to be added
- 3. Please, keep track of your calculations for verification
 - requirements

43	CO ₂ capture and replacement	
44	e _{sor}	Emissions per MJ ethanol
45	0 g CO _{2 eq} / MJ _{Ethanol}	0,00
46		Result g CO _{2,eq} / MJ _{Ethanol} 0,00
47		
48		
49	CO ₂ capture and geological storage	
50	e _{sos}	Emissions per MJ ethanol
51	0 g CO _{2 eq} / MJ _{Ethenol}	0,00
52		Result g CO _{2,eq} / MJ _{Ethanol} 0,00
S	lide 17 Public workshop Utrecht March 21, 2011	www.biograce.net

CO₂ storage or replacement General principles :

- 4. Replacement : "Emission saving from carbon capture and replacement, e_{ccr} , shall be limited to emissions avoided through the capture of CO_2 of which the carbon originates from biomass and which is used to replace fossil-derived CO_2 used in commercial products and services."
- 5. Storage : "Emission saving from carbon capture and geological storage e_{ccs} , that have not already been accounted for in ep, shall be limited to emissions avoided through the capture and sequestration of emitted CO_2 directly related to the extraction, transport, processing and distribution of fuel."

Slide 18 Public workshop Utrecht March 21, 2011

: Contents

- 1. Introduction
- 2. Land use change
- 3. Improved agricultural management
- 4. CO₂ storage or replacement
- 5. New items in Public version 4
 - User manual
 - Calculation rules
 - Track changes
- 6. New item for Public version 5:
 - Calculation of N₂O field emissions
- 7. BioGrace as a voluntary scheme
- Slide 19 Public workshop Utrecht March 21, 2011

Public workshop Utrecht

March 21, 2011

Slide 20

New items in Public version 4

User Manual (or tutorial)

- A detailed tutorial will be provided with the BioGrace tool
- It aims at helping the economic operators to understand and use the BioGrace GHG calculation tool.

User manual for the BioGrace greenhouse gas (GHG) calculation tool

This support document is designed to help the economic operators to understand and use the BioGrace GHG calculation tool. The main questions that arise concerning the tool are presented below, with a link to the appropriate chapter of this user manual.

Functions of the tool	This chapter details the different way of using this tool. You will find what the tool was developed for and what it can possibly do.
How does the tool work?	This chapter explains how the tool is designed and the general principles of the calculations.
How can I use the tool to understand the default values?	
How can I use the tool to calculate my own actual value?	The following chapters allow any user to make use of the tool in function of its personal objective.
How can I create a new pathway with the tool?	

New items in Public version 4

Calculation rules

- Making actual calculations under the RED/FQD requires rules
 - Which input data and standard values are allowed?
 - Cut-off criterion
 - Combination of actual and disaggregated values
- Many of these rules not yet defined
 - More detailed than methodology in RED Annex V.C
 - Some rules given in communications, several are not covered
- BioGrace will make document "calculation rules"
 - To be published as a separate document
 - To be linked to GHG Excel tool
- European Commission will be evaluating rules...
 - ... when assessing a voluntary certification scheme after a request for recognition
- Slide 21 Public workshop Utrecht March 21, 2011

BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

: Contents

- 1. Introduction
- 2. Land use change
- 3. Improved agricultural management
- 4. CO₂ storage or replacement
- 5. New items in Public version 4
 - User manual
 - Calculation rules
 - Track changes
- 6. New item for Public version 5:
 - Calculation of N₂O field emissions
- 7. BioGrace as a voluntary scheme
- Slide 23 Public workshop Utrecht
 - March 21, 2011

New item in Public version 5

Calculation of N₂O field emissions

- 1. A major contributors to GHG emissions of most of the pathways
- Default value : N₂O emissions calculated from a model (DNDC, average EU), except some pathways (IPCC Tier 1 for soybeans, palm trees, sugarcane)
- For new pathways or when modifying the cultivation data from an existing pathways : BioGrace recommends to use IPCC Tier 1 estimation for this emission
- 4. BioGrace tool aims to provide an Excel sheet for making N₂O calculations

Slide 24 Public workshop Utrecht March 21, 2011

N₂O emissions : fill in few input data

	•	E			-			
	•	A	В	C D	E	F		
	•	Calculation of N2O emissions using the IPCC r	nethodo	logy				
	•	This sheet calculates the emissions of N2O from the cultivation of th	ne crop					
	•	The calculations make use of IPCC methodology Tier 1 on the estima	tion of N ₂ O e	emissions from mar	naged soils (1).			
	•	For some crops (soybeans, sugarcane and palm trees) the addition	al hypothesi	s used in JEC calcu	lations have be	en incorpo		
	•	In the case of soybeans, the nitrogen content of below ground biom	lass was co	insidered to be 0.0	74 kg N/(kg dry	matter) ins		
	•	In the case of sugar cane, N of above ground residues are not calc	ulated using	the IPCC methods.	Alternatively ac	dditions of		
		(1) IBCC 2006, 2006 IBCC Quidelines for National Greenhouse Gas I	a by the JEC	Considering that (1.22 t dry residu	les are rett		
	•	(1) IFCC 2000, 2000 IFCC Guidelines for National Greenhouse Gas in	inventories, r	repared by the Na	lional Greenhou	ise das inv		
	•	Crop data.						
	•	Please enter the data for your crop in the blue cel		-				
	•	and the second						
	•							
	•	Crop name	Sugar cane					
	•	Crop yield (fresh matter)	1000	kg _m /ha				
	•	Cron vield (dry matter)	45,0%	j ko /ha				
	•	Straw vield (removed from the field)		ko dm/ha				
	•							
	•			ļ				
	•	Amount of vignasse applied to the field (by default 0.94		ko of vionasse do	ko sucar can	e fm		
	•	Amount of filter cake applied to the field (by defaul 0.01)		kg of filter cake d	/kg sugar can	e fm		
	•	N content of vignasse applied to the field (by defailt 0.36)		kg N / t vignasse				
	•	N content of filter cake applied to the field (by default 12.5)		kg N / t filter cake				
	•	Carbon loss due to land use chance	0	t/ha				
	•	is the crop irrigated OR is rainfall in rainy season in minus potencial						
	•	evaporation higher than soil water holding capacit?	1	yes=1; no=0				
_	• P	Public workshop Utrecht						
Slide 25	• I	Jarch 21, 2011				WW	w.biogr	ace.net
	• 10	1aluli 21, 2011						

Slide 26

.

N₂O emissions

F _{CR}	N in crop re	esidues	
AG _{DM(T)}	0	kg/ha	
Frac Renew(T)	1		
RAG(T)	0,000		
N _{AG(T)}	0		
Frac Remove(T)	#DIV/0!		
R _{BG(T)}	0,00		
N _{BG(T)}	0,000		
For	0	kg N/ha	Eq 11.6
	0	kg N/ha	Eg 11.7A

Intelligent Energy 💿 Europe

		N _{AD}	slope	intercept	AG _{DM(T)}	(AG_DMIT) *1001 RAG(T)	R	BG-BIO(T) NB
	Sugar beet	0,016	1,07	1,54	2,13	4,87	3,87	0,2
	Wheat	0,006	1,51	0,52	1,35	3,46	2,46	0,24
	Corn	0,006	1,03	0,61	1,18	3,14	2,14	0,22
	Sugar cane				0,00	1,00	0,00	
	Rapeseed	0,006	1,09	0,88	1,48	3,69	2,69	0,22
	Sunflower	0,006	1,09	0,88	1,48	3,69	2,69	0,22
ublic workshop Utrecht	Soybeans	0,008	0,93	1,35	1,86	4,38	3,38	0,19
larch 21, 2011	Palm	0,011			0,00	1,00	0,00	

kg N/ha

kg N/ha

www.biograce.net

N in synthetic fertilizer

N in synthetic fertilizer

N in organic fertilizer

0 kg N/ha

Fan

N₂O emissions : direct and indirect emissions calculation

	•					Fon For	N ₂ O _(ATD) -N	Volatilization
4	Indirect N ₂ O emissions from man	aged soils (Tie	r1)		0,01	Facur Fracus EFs	Fon Frac GASM	0 k 0 k 0,2
5		kg N ₂ O_N/ha		kg	N ₂ O/ha			0,1
6	N ₂ O from atmospheric deposition of N	0,00	0,00	0,00	0,00			kg N2O_N/ha
7	N ₂ O ₀₀ -N	0,00	0,00	0,00	0,00		N2O(ATD)-N	0,00
8		_						
	•		7					
	Direct + Indirect №0 emissio	ns from man	aged soi	ls (Tier1)			
6	a a su canada a							

	kg N ₂ O_N	kg N ₂ O						
otal N ₂ O emissions	0,01	0,00 0,00		0,01	0,00 0,00		per ha	
	0,01	0,00	0.00	0,02	0,00	0.00	per kg	
	0,0005	0,0000	0,0006	0,00	0,00	0.00	per MJ	

- Slide 27 Public workshop Utrecht
 - March 21, 2011

BIOGRACE Biofuel Greenhouse Gas Emissions in Europe Harmonised Calculations of

Contents •

- Introduction 1.
- 2. Land use change
- 3. Improved agricultural management
- CO₂ storage or replacement 4.
- 5. New items in Public version 4
 - User manual
 - Calculation rules
 - Track changes
- New item for Public version 5: 6
 - Calculation of N₂O field emissions
- BioGrace as a voluntary scheme 7.
- Public workshop Utrecht Slide 28 March 21, 2011

BioGrace as a voluntary scheme

Observations:

- Current voluntary cert. schemes do not include GHG tool
 - ISSC, REDcert, NTA8080, RSPO, RTRS, Bonsucro (BSI)
- European Commission only allows use of GHG tool if it is recognised as a voluntary cert. scheme
- To our knowledge no GHG tools have been send to Commission for recognition
 - Some schemes will be send in, eg. National GHG tools
 - Information on actual developments is scarce
- GHG tool can be used as "add-on" to existing schemes

BioGrace will submit GHG tool to EC for recognition as a voluntary scheme

Slide 29 Public workshop Utrecht March 21, 2011

BioGrace as a voluntary scheme

- BioGrace voluntary scheme will consist of a zip file with
 - 1. BioGrace Excel GHG tool
 - 2. BioGrace calculation rules
 - 3. BioGrace user manual
- BioGrace scheme does not contain requirements on audits and mass balance
 - BioGrace has to be used together with another scheme

Time schedule

- Send in BioGrace tool to EC for recognition early April
- Recognition period lasts ... ?

Slide 30 Public workshop Utrecht March 21, 2011

