

National GHG calculators – harmonized in co-operation with BioGrace

Simone te Buck Agentschap NL Public workshop Utrecht March 21, 2011

: Contents

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 2 Public workshop Utrecht March 21, 2011

Introduction

Rules and methodology for GHG calculations

- RED article 19: Economic operators may use
 - o default values (19.1.a)
 - o actual values calculated according to Annex V.C (19.1.b)
 - o sum of actual value and disaggregated default value (19.1.c)
- RED Annex V.C + June communications: Methodology

Making actual calculations not straightforward

- Some kind of tool or software is needed
 - o Some companies will develop own tools
 - o Many others will use publicly available tools
- Several GHG calculators available
- Project BioGrace will ensure that all calculators will give the same result
- Slide 3 Public workshop Utrecht March 21, 2011

www.biograce.net

.

: Contents

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 4 Public workshop Utrecht March 21, 2011

Dutch tool - General information

Background

- o Dutch government prepared a reporting obligation on sustainability for biofuels to start per 1-1-2009
- o This was abandoned after the publication of the draft Renewable Energy Directive (RED).

The Dutch GHG calculator

- o was developed in 2007/2008 by consultants EcoFys and CE
- o has been available for (Dutch) stakeholders to make GHG calculation on biofuels
- has not been used extensively due to lack of legal framework in 2008 2010
- o was recently updated and made "RED"- proof by Agency NL

Slide 5 • Public workshop Utrecht

March 21, 2011

Reference:	Diesel	<u></u>		Load [Default Values	Chain management
Biofuel:	Biodiesel	•		Calcu	Ilate Results	Disclaimer
Feedstock:	Rapeseed	•		Ad	apt Chain	
D = Default:	U = User input					Version 3.1 - aud
Current cha	in: Biodiesel from Rapeseed (not saved by user)				
Feedstock p	oroduction					
	Yield main product	Raw rapeseed		3113	kg / (ha*yr)	D
	Main product	Moisture content		0,10	kg / kg	D
	Material & energy use	Diesel		2963	MJ / (ha*yr)	D
	Material & energy use	N fertilizer		137,4	kg N / (ha*yr)	D
	Material & energy use	CaO fertilizer		19,00	kg CaO / (ha*yr)	D
	Material & energy use	K2O fertilizer		49,46	kg K2O / (ha*yr)	D
	Material & energy use	P2O5 fertilizer		33,67	kg P2O5 / (ha*yr)	D
	Material & energy use	Pesticides		1.230	kg / (ha*vr)	D
	Material & energy use	Seeding material - rapeseed		6,000	kg / (ha*yr)	D
	Field emissions	Field N2O emissions		3.103	kg / (ha*vr)	D
	Field emissions	Direct Land Use Change	No	-,	g CO2/MJbiofuel	D
Feedstock d	Irvina					
	Yield main product	Dried rapeseed		1.000	MJdried rapeseed / (MJraw rape	eseed) D
	Main product	Moisture content		0.10	ka / ka	D
	Material & energy use	Diesel		0.181	MJ / (GJdried rapeseed)	_ D
	Material & energy use	Electricity (EU-mix, LV)		3,079	MJ / (GJdried rapeseed)	D
Tresservent for						
Transport fe	edstock	Deied ann an ad		0.000	Malain during a second / (Malain during	
	Field main product	Dried rapeseed		0,990	MJdried rapeseed / (MJdried ra	peseed) D
	Main product	Moisture content		0,10	kg / kg	D
	I ransport	I ruck for dry product (Diesel)		50	кm	D
Extraction in	n oil mill					
	Yield main product	Crude vegetable oil		0,613	MJcrude oil / (MJdried rapeseed	d) D
	Yield by-product	Rapeseed cake		0,387	MJrapeseed cake / (MJdried rap	beseed) D

Summary Input		Summary output		Biodiesel fro	m Rapeseed			Referer	nce: Diesel	
		ĺ	Energy us	se (per MJ)	GHG emissi	ons (kg/MJ)	Energy use	e (per MJ)	GHG emissio	ons (kg/MJ)
			(MJ)	(% of ref.)	(g CO2-eq.)	(% of ref.)	(MJ)	(%)	(g CO2-eq.)	(%)
Biofuel	Biodiesel	Feedstock production	0,1672	14%	28,7496	34%				
Feedstock	Rapeseed	Transport actions	0,0233	2%	1,4345	2%				
Process	-	Conversion operations	0,3677	32%	21,5636	26%				
Reference	Diesel									
Print s	ummary results									
		End use					1,0000	87%	70,1047	84%
Show c	tetailed results	Fossil indirect					0,1550	13%	13,6953	16%
		Total	0,5582	48,3%	51,7477	61,8%	1,1550	100%	83,8000	100%
Ret	urn to input	% Reduction		51,7%		38,2%				0%
	· · ·									
Avoided emission (tonne CO ₂ /h		mission (tonne CO ₂ /ha/yr)			1371,5					
Biofuels	s greenhouse gas co							estere. Ni	L Agency	
	<u> </u>								<u>200</u> 3 M	inistry of Economic Affairs

Energy use [% of reference]

Biofuel Feedstock	Biodiesel Rapeseed	Return	to overview results		Return to input				
Process	- Diesel								
	Biosol	Absolute N	umbers (including	allocation)			Relative con	tribution (includi	ng allocation)
	Energy use	Emission CO2	Emission N2O	Emission CH4	Emission GHG	Energy use	Emission CO2	Emission N2O	Emission CH4
	[MJ fossil fuel/	[kg CO2/	[kg CO2-eq/	[kg CO2-eq/	[kg CO2-eq/	[%]	[%]	[%]	[%]
	MJ biofuel]	MJ biofuel]	MJ biofuel]	MJ biofuel]	MJ biofuel]				
Feedstock production									
Diesel	0,047	3,555	0,00E+00	0,00E+00	3,555	8,4%	6,9%	0,0%	0,0%
N fertilizer	0,092	5,319	5,370	0,376	11,065	16,5%	10,3%	10,4%	0,7%
CaO fertilizer	5,13E-04	0,031	1,41E-03	1,29E-03	0,034	0,1%	0,1%	0,0%	0,0%
K2O fertilizer	6,55E-03	0,363	2,47E-03	0,024	0,390	1,2%	0,7%	0,0%	0,0%
P2O5 fertilizer	7,02E-03	0,445	7,03E-03	0,014	0,466	1,3%	0,9%	0,0%	0,0%
Pesticides	4,52E-03	0,166	8,38E-03	9,89E-03	0,185	0,8%	0,3%	0,0%	0,0%
Seeding material - rapeseed	6,46E-04	0,034	0,024	1,72E-03	0,060	0,1%	0,1%	0,0%	0,0%
Field N2O emissions	0,00E+00	0,00E+00	12,575	0,00E+00	12,575	0,0%	0,0%	24,3%	0,0%
Direct Land Use Change	-	0,00E+00	-	-	0,00E+00	-	0,0%	-	-
Total Feedstock production	0,159	9,914	17,989	0,427	28,331	28,4%	19,2%	34,8%	0,8%
Allocation burden of this and p	revious steps to main	product Raw rapes	eed	100,0%					
Allocation burden of this and p	revious steps to by-pr	oduct Raw rapesee	d	0,0%					
Allocation burden of this step to	Biodiesel at end-of-	chain		58,6%					
Feedstock drving									
Diesel	2.13E-04	0.016	0.00E+00	0.00E+00	0.016	0.0%	0.0%	0.0%	0.0%
Electricity (EU-mix, LV)	8.51E-03	0.377	5.05E-03	0.021	0.403	1.5%	0.7%	0.0%	0.0%
Total Feedstock drying	8,72E-03	0,393	5,05E-03	0,021	0,419	1,6%	0,8%	0,0%	0,0%
Allocation burden of this and p	revious steps to main	product Dried rape	seed	100.0%					
Allocation burden of this and p	revious steps to by-pr	oduct Dried rapese	ed	0,0%					
Allocation burden of this step to	Biodiesel at end-of-	chain		58,6%					
Transport feedstock									
Truck for dry product (Diesel)	2,29E-03	0,173	0,00E+00	2,43E-04	0,173	0,4%	0,3%	0,0%	0,0%
Total Transport feedstock	2,29E-03	0,173	0,00E+00	2,43E-04	0,173	0,4%	0,3%	0,0%	0,0%
• • [Public works	hon Utrech	t						
Slide 8 •			16				www.	biograce.	net

March 21, 2011

•

DIRECT LAND USE	E CHANGE CALCULATION			Return to input	
1. Standard Soil Ca	rbon stock in mineral soil (SOC _{st})				
Climate region Soil type	Boreal High activity clay soils Result	See figure 1 See figure 3 & 2 SOC _{ST} 68 ton C / ha	The blue fields are drop do	wn boxes.	
2. Factors reflecting	the difference in Soil Organic Carbon (SOC)	compared to the Standard Soil Org	janic Carbon (SOC _{ST})		
Actual land use	Default=Calculate with sta User = Own calculation incl. me	ndard values Default asured value	Reference land use	Default=Calculate with star User = Own calculation incl. mea	ndard values Default asured value
Type of land Climate region Land use F _{LU} Management F _{MG} Input F _I	Cropland Temperate/Boreal, dry Cultivated Full-tillage Low Result	See tables 3, 6 and 8 0,8 1 0,95 SOC _A 51,68 ton C / ha	Type of land Climate region Land use F _{LU} Management F _{MG} Input F _I	Cropland Temperate/Boreal, dry Cultivated Full-tillage Low Result	See tables 3, 6 and 8 0,8 1 0,95 SOC _{ref} 51,68 g C / ha
3. Above and below	ground vegetation (Cveg)				
Actual land use Type of land Domain Climate region Ecological zone Continent Crop type	Default=Calculate with sta User = Own calculation incl. me Cropland (General)	ndard values Default asured value	Reference land use Type of land Domain Climate region Ecological zone Continent Crop type	Default=Calculate with star User = Own calculation incl. mea Forest 10-30% canopy cover, excl plantation Temperate Temperate continental forest Asia, Europe (<= 20 y)	ndard values Default asured value s
	Result	C _{VEG,A} 0 ton C / ha		Result	C _{VEG, ref} 2 ton C / ha
4. Bonus (eb) for cu	Iltivation on restored degraded land under the	conditions provided for in point 8	of Annex V of directive.		
Bonus	No	No = $0 \text{ g } \text{CO}_2/\text{MJ}$ Yes = -29 g CO ₂ /MJ			
Total results					
Result: CC	\mathbf{D}_2 emission caused by direct land use change	8,5625592 g CO ₂ /MJ biofuel	Calculate Results	Re-calculate the results if you changed the va	alues here or at the input page.

Dutch tool - Summary

Contents

- o Excel-based tool
- o Tool is rather similar to BioGrace Excel sheets, but
 - It is more user-friendly:
 - no calculations details, results in graphs
 - DLUC calculations are user-friendly
- o The software programming makes it less flexible
 - More difficult to modify pathways or build new ones

Status

- o Tool is available on-line via
 - www.senternovem.nl/gave_english/ghg_tool
- o All 22 chains (BioGrace) are included
- o Updates follow updates of BioGrace Excel sheet

Public workshop Utrecht

• March 21, 2011

Slide 10

: Contents

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 11 Public workshop Utrecht March 21, 2011

German tool - general information

Background

- o No public tool has been available so far in Germany
- Aim: to facilitate stakeholders calculating actual values
 (combination of actual values and disaggregated default values)

The German GHG calculator

- o is made by IFEU, contracted by BMU
- o should be finalised mid 2011
- o should be in line with BLE Guidance
- o is strongly linked to economic operators: 1 sheet dedicated
 - for cultivators, mill operators, refinery operators, etc.

Slide 12 Public workshop Utrecht March 21, 2011

according to the EU Directive 2009/28/EC

according to the EU Directive 2009/28/EC

Biofuel Greenhouse Gas Emissions in Europe

BIOGRACE

Harmonised Calculations of

German GHG tool

BIOGR	ACE		Intelligent Er	nergy 💿 Europe
Harr Bio	fuel Greenhouse Gas Line Ge	rman GHG	tool	
•	Palm oil greenhouse gas ca	lculator About	Background data	Start
•	according to the EU Directive 2009/28/EC			
•	I. Market actor: Plantation operat	tor, first purc <u>haser</u>		
•	Step-by-step manual for calculating CO ₂ e	emissions from land use change		
•	vegetation types etc.			
	neoure			
•	value will be added in sheet »actor cultivator« step 1	#WAARDE!		value and back
•	value will be added in sheet »actor cultivator« step 1	#WAARDE! kg CO ₂ eq per ha per year	confirm	value and back
•	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc	#WAARDE! kg CO ₂ eq per ha per year culate CO2 emissions from land us	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro	#WAARDE! kg CO ₂ eq per ha per year culate CO2 emissions from land us	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select:	#WAARDE! kg CO ₂ eq per ha per year sulate CO2 emissions from land us ound biomass on 01.01.2008 (CS _R)	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select: Vegetation type	#WAARDE! kg CO2eq per ha per year culate CO2 emissions from land us ound biomass on 01.01.2008 (CS _R) Forest (10-30% canopy cover)	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select: Vegetation type Domain	#WAARDE! kg CO2eq per ha per year sulate CO2 emissions from land us ound biomass on 01.01.2008 (CS _R) Forest (10-30% canopy cover)	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select: Vegetation type Domain Climate region	#WAARDE! kg CO2eq per ha per year culate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover)	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select: Vegetation type Domain Climate region Ecological zone	#WAARDE! kg CO2eq per ha per year sulate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover) Image: Comparison of the second sec	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select: Vegetation type Domain Climate region Ecological zone Continent	#WAARDE! kg CO2eq per ha per year culate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover) Image: Color of the second s	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calcon STEP 1 - Carbon stock in above and below grown Please select: Vegetation type Domain Climate region Ecological zone Continent Above and below ground carbon on 01.01.08	#WAARDE! kg CO2eq per ha per year sulate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover) Image: Comparison of the selection Please make a valid selection	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select: Vegetation type Domain Climate region Ecological zone Continent Above and below ground carbon on 01.01.08	#WAARDE! kg CO2eq per ha per year culate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover) Please make a valid selection	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calc STEP 1 - Carbon stock in above and below gro Please select: Vegetation type Domain Climate region Ecological zone Continent Above and below ground carbon on 01.01.08 STEP 2 - Soil carbon on 01.01.2008 (CS _R) Climate region	#WAARDE! kg CO2eq per ha per year sulate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover) Please make a valid selection Tropical, moist	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calcon STEP 1 - Carbon stock in above and below ground Please select: Vegetation type Domain Climate region Ecological zone Continent Above and below ground carbon on 01.01.08 STEP 2 - Soil carbon on 01.01.2008 (CS _R) Climate region	#WAARDE! kg CO2eq per ha per year sulate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover) Please make a valid selection Tropical, moist	se changes	value and back
	value will be added in sheet »actor cultivator« step 1 Specify the parameters in step 1-4 to calcon STEP 1 - Carbon stock in above and below grown Please select: Vegetation type Domain Climate region Ecological zone Continent Above and below ground carbon on 01.01.08 STEP 2 - Soil carbon on 01.01.2008 (CS _R) Climate region Please select:	#WAARDE! kg CO2eq per ha per year sulate CO2 emissions from land us ound biomass on 01.01.2008 (CSR) Forest (10-30% canopy cover) Please make a valid selection Tropical, moist	se changes	value and back

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **German GHG tool**

according to the EU Direct	tive 2009/28/EC			
. Market actor: Pla	antation operator, first purch	naser		
Step-by-step manual for	r calculating GHG emissions of oil	oalm cultivatio	n	
Final Desult		Т	he CO_2 emissions from	
Please provide this info	o together with	0	in pain cultivation amount to	
your batch to oil miller		_	123,7 g CO ₂ eq/k	g FFB
Please note: When com	bining FEB batches and			
averaging GHG emission	ns, GHG value for each	S	ize of the FFB batch	
batch may not exceed 2	280g CO2eq/kg FFB		0 kg	
Enter your operating da	ta in step 1-4 to calculate CO_2 emis	sions of your I	FB batch	
Enter your operating da	Ita in step 1-4 to calculate CO_2 emis	sions of your I	FFB batch	
Enter your operating da STEP 2 - GHG emissio	nta in step 1-4 to calculate CO ₂ emisons from cultivation	sions of your I	FB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per	Ita in step 1-4 to calculate CO_2 emisons from cultivation	sions of your I	FB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per	nta in step 1-4 to calculate CO ₂ emisons from cultivation r ha per year?	sions of your I	FB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per	nta in step 1-4 to calculate CO ₂ emissions from cultivation r ha per year? 19.000 kg FFBs per ha per yea	sions of your I r	FB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per What is the size of your cu	nta in step 1-4 to calculate CO ₂ emis ons from cultivation r ha per year? 19.000 kg FFBs per ha per yea ultivation area?	sions of your I	FB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per What is the size of your cu	nta in step 1-4 to calculate CO ₂ emissions from cultivation r ha per year? 19.000 kg FFBs per ha per yea ultivation area? 28 ha	sions of your I r	FFB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per What is the size of your cu How much fertilizer did you a	nta in step 1-4 to calculate CO ₂ emis ons from cultivation r ha per year? 19.000 kg FFBs per ha per yea ultivation area? 28 ha apply per ha per year? Please enter the amo	sions of your I r	FB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per What is the size of your cu How much fertilizer did you a	nta in step 1-4 to calculate CO ₂ emis ons from cultivation r ha per year? 19.000 kg FFBs per ha per yea ultivation area? 28 ha apply per ha per year? Please enter the amo 128,0 kg N per ha per year	sions of your F r punt for each of th	FFB batch	
Enter your operating da STEP 2 - GHG emissio What is your FFB yield per What is the size of your cu How much fertilizer did you a N-fertiliser P_2O_5 -fertiliser	ta in step 1-4 to calculate CO_2 emissions from cultivation r ha per year? 19.000 kg FFBs per ha per year ultivation area? 28 ha apply per ha per year? Please enter the amo 128,0 kg N per ha per year 144,0 kg P_2O_5 per ha per year	sions of your I	FB batch	

Slide 17

BIOGRACE

www.biograce.net

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **German GHG tool**

What is your FFB yield per ha per year?	?	
	19,000 kg FFBs per ha per year	
What is the size of your cultivation are	a?	
26	28 ha	
How much fertilizer did you apply per h	na per year? Please enter the amount for each of the follow	wing fertilizers.
N-fertiliser	128.0 kg N per ha per year	
P ₂ O ₅ -fertiliser	<mark>144.0</mark> kg P ₂ O ₅ per ha per year	
K₂O-fertiliser	200.0 kg K₂O per ha per year	
CaO-fertiliser	0.0 kg CaO per ha per year	
How much pesticides did you apply pe	r ha per year?	
Pesticides	8.4 kg active ingredient per ha per year	
How much diesel did you use per ha p	er year? Please include	
Diesel	57.4 I per ha per year	
What is the size of your batch (consign	nment)?	
Funite allowing Standilling and		
Emissions tertilizer	2,077 kg CO2eq per na per year	
N-fertilizer production	757 kg CO ₂ eq per ha per year	
N ₂ O field emissions	1,058 kg CO ₂ eq per ha per year	
P ₂ O ₅ fertilizer production	146 kg CO ₂ eq per ha per year	
K ₂ O-fertilizer production	116 kg CO2eq per ha per year	
Ca-fertilizer production	0 kg CO ₂ eq per ha per year	
Emissions pesticide production	93 kg CO2eq per ha per year	
Emissions diesel	180 kg CO2eq per ha per year	
Emissions (cultivation)	2,350 kg CO2eq per ha per year	
Emissions (land use changes)	0 kg CO2eq per ha per year	
Total emissions	2,350 kg CO₂eq per ha per year	
Dublic workshap Litracht		
		hing hing

Slide 18 •

March 21, 2011 •

BIOGRACE

according to the EU Directive 2009/28/EC

Harmonised Calculations of

Biofuel Greenhouse Gas Emissions in Europe German GHG tool

Slide 21

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **German GHG tool**

according to	the EU Directive 200	Contract of the second s				
		09/28/EC				
Mixing CPO k	batches from several	suppliers and averaging	GHG emissions			
		Overall quantity	Overall GHG value			
		metric tonnes	g CO₂eq/kg FFB			
			0	0	Confir	m value an
				_		
Supplier#	Plantation name	FFB quantitity	GHG value			
		metric tonnes	g CO ₂ eq/kg FFB		fill in the info	rmation
1					delivered by y	our suppl
2				_		
3				_		
4				_		
6				-		
7				-		
8						
9						
10						
11				_		
12				_		
13				_		
14						
15						
13						
18						
10						
19						

Start

German GHG tool

Palm oi	l green	house gas	calculator
---------	---------	-----------	------------

About

Background data

according to the EU Directive 2009/28/EC

IV. Market actor: Last Interface

Step-by-step manual for calculating greenhouse gas savings:

Final Result Greenhouse gas savings

44% compared to fossil comparator

 STEP 1

 What are the GHG emissions of the final product?

 1747 g CO2eq/kg refined palm oil

 Calculation of heat content

 47 g CO2eq/MJ

 Is the biofuel used for electricity production or for cogeneration?

 Electricity from Cogeneration

 85 g CO2eq/MJ

 Slide 22

 Public workshop Utrecht

 March 21, 2011

German tool - Summary

Contents

- o Excel-based tool
 - o Tool differs from BioGrace Excel sheets:
 - Pathways are split in partial calculations
 - DLUC calculations are user-friendly
 - o The software programming makes it inflexible
 - Not possible to modify pathways or build new ones

Status

- o Tool is available on-line via www.ifeu.de/english
- o Currently one chain available: palm oil
- Cereals-to-ethanol and oil_seeds-to-biodiesel chains are ready but not available on line

Slide 23 Public workshop Utrecht March 21, 2011

: Contents

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 24 Public workshop Utrecht March 21, 2011

Spanish tool - general information

Background

- o No public tool has been available so far in Spain
- Aim: to provide stakeholders (especially farmers and small biofuel companies) with a tool to calculate the GHG emissions required by the RED

The Spanish GHG calculator

- o being developed by CIEMAT, contracted by IDAE
- o focuses on agricultural stages
- o uses data from NUTS study (actual values or averages
 - calculated for smaller geographical areas)

Slide 25 Public workshop Utrecht March 21, 2011

Spanish GHG tool

Spanish GHG tool

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **Spanish GHG tool**

Agricultural county selection screen •

- - - - - - - - - - - - - - - - - - -	Biofuel and raw material Agricultural p General data Fertilization Pesticio	hase Transportation phase Pl des Field works Crop yield N	ant production phase Distribution pha ₂ O emissions Others	ase CO ₂ capture Results
	Region Andalucía Aragón Asturias Baleares Canarias Cantabria Castilla Laón Castilla La Mancha Castilla La Mancha Cataluña Ceuta y Melilla Comunidad de Madrid Comunidad de Madrid Comunidad de Madrid Comunidad Valenciana Extremadura Galicia La Rioja Murcia Navarra	Provincia Almería Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla	County Alto Andarax Bajo Almazora Campo Dalias Campo Nijar y Bajo Andarax Campo Tabernas Los Vélez Río Nacimiento	Irrigation type IRRIGATED RAINFED Seed dose
Slide 28	Biofuel BIODIESEL Ra Public workshop Utrecht March 21, 2011	2 NUTS3	NUTs4	I III www.biograce.net

• .

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **Spanish GHG tool**

•	🛃 Spanish biofuels calculator	
•	Biofuel and raw material Agricultural phase Transportation phase Plant production phase Distribution p General data Fertilization Pesticides Field works Crop yield N ₂ O emissions Others	hase CO ₂ capture Results
	Mineral fertilizers % N % P205 % K20 NPK 15/15/15 0,00 kg/ha 15 15 NPK 8/15/15 0 kg/ha 8 15 15 NPK 9/18/27 0 kg/ha 12 10 17 Urea 0 kg/ha 12 12 12 Diammonium phosphate 0 kg/ha 12 12 12 Diammonium phosphate 0 kg/ha 12 0 21 Potassium sulphate 0 kg/ha 0 0 53 Other 0 kg/ha 0 0 53 Other 0 kg/ha 0 0 53 Other 0 kg/ha 0 0 0	Organic fertilizers Image: Comparison of the system Image: Compari
•	Biofuel BIODIESEL Raw material RAPESEED	
Slide 29	Public workshop Utrecht March 21, 2011	efault values of the RED are uploaded www.biograce.net

•

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **Spanish GHG tool**

Transformation data input screen

•	🛓 Spanish biofuels calculator	
•	Biofuel and raw material Agricultural phase Transportation phase Plant production phase Distribution phase CO2 capture Results	
•	Phase 1 Phase 2 Phase 3	
•	Drying and storage Raw material moisture begore drying 0 + % Electricity consumption 0 + kWh/t dry raw material Raw material moisture after drying 0 + % Diesel consumption 0 + 1/t dry raw material	
•	Extracción	
•	Raw material Rape seeds 0 kg seeds/kg rapeseed crude oil Hexane 0 kg hexane/kg rapeseed crude oil	
•	Energy consumption Electricity	
•	Heat from Natural gas 💽 0 🚔 MJ/kg rapeseed crude oil	
•	Outputs Rapeseed crude oil 0 🚔 kg rapeseed crude oil/kg rape seed Rape meal 0 🚔 kg rape meal/kg rape seed	
•		
•		
•	Biofuel BIODIESEL Raw material RAPESEED	· · · · · · · · · · · · · · · · · · ·
•	Values to reproduce the default values of	the RED are uploaded
Slide 30	March 21, 2011	w.biograce.net

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **Spanish GHG tool**

Results screen

BIOGRACE

• •

Cultivation of raw materials eec Tr	ansport and distribution phases	e _{td} Transfe	prmation phase e p- e	ee Totals	
All results in CO ₂ eq g/MJ biodiese	Non-allocated results	Allocation factor (%)	Allocated results	Emission reduction (%)	Deafault values RED Annex V.D
Cultivation e _c	49,33	58,59	28,9		29
Transport e _{td}	1,64		1,53		1
Processing e _p	25,5		22,08		22
Land use change e _l	0	58,59	0		0
e _{sca} + e _{ccr} + e _{ccs}	0	100	0		0
TOTALS	76,47		52,51	37,34	52
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22,075 28,901 Allocated results		29 Default values RED	Cultin Tran Proce Land Seca	vation (ec) sport (etd) essing (ep) I use change (el) + eccr + eccs

Spanish tool - Summary Contents Tool build in Java 0 Focus on Spain: 0 Contains data on agricultural inputs and yields for 6 crops used to produce biofuels in Spain at the level of agrarian county (NUTs4) Any farmer in the country can select his/her county and crop and the corresponding values regarding agricultural inputs and yields will appear in the tool. For processing and transport: RED default values 0 Standard values from BioGrace 0 **Status** Biodiesel from rapeseed, rapeseed HVO and ethanol from 0 wheat CHP chains ready Final version expected mid-2011 0 Public workshop Utrecht www.biograce.net Slide 32 March 21, 2011

: Contents

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 33 Public workshop Utrecht March 21, 2011

UK tool - general information

Background

- UK GHG calculator was developed under RTFO reporting scheme
- o Calculator existing since 2008, regularly updated
 - o Aim is to facilitate stakeholders calculating actual values under RTFO reporting

The UK GHG calculator

- o was made and is regularly updated by consultant E4Tech, contracted by RFA
- o has recently been made "RED-proof"
- o strongly linked to RTFO reporting scheme
- o provides more "standard values" as compared to BioGrace

Slide 34 Public workshop Utrecht March 21, 2011

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **UK GHG tool**

and a state of the second s
, na an ana ana ana ana ana ana ana ana
- 28 H 28 H 26 H 28 H 28 H 21 H 21 H 22 H 23 H 28 H 24 H 26 H 21 H 21 H 22 H 24 H 25 H 26 H 26 H 26 H 26 H 26 H
. Inter dat dest dat date dat date dat date date date d
I TATA DA TATA
Intermediate results:
Fuel chain carbon intensity: 1070 kg(CO2e)/t(biofuel) Carbon intensity: 39.9 grams(CO2e)/MJ
GHG Saving: 52.4 %
A REAL PROPERTY AND A REAL PROPERTY A

UK GHG tool

7.2 Fuel chain – Liquid

Basic data	27.					
Module description	A brief description of the module. This field is optional.					
Details and links to verification evidence	Any further details can be added here, including, for example links to any evidence which supports the actual data used within this module. This field is optional.					
Internal batch number	A batch number for your own reference can be entered here. This field is optional.					
Fuel type produced	The biofuel type of this batch / fuel chain. This field is compulsory. This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.					
Country	The country in which the feedstock was produced (NOT necessarily the country in which the biofuel was produced). This field is compulsory ('Unknown' can be selected if relevant). This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.					
Biofuel feedstock	The type of feedstock from which the biofuel was produced. This field is compulsory ('Unknown' can be selected if relevant). This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.					

Slide 36

Slide 37

UK GHG tool

7.2 Fuel chain – Liquid

Quantity of fuel	The quantity of biofuel in this batch (measured in litres) – this is the quantity of fuel the software enters into the monthly CSV report which can be uploaded to the RFA Operating System.					
Quantity of fuel recorded in the RFA Operating System	If you make any adjustments to fuel quantities recorded on the RFA Operating System after uploading a monthly CSV report, the new quantitie can be recorded in this field (measured in litres).					
	Annual reports can only be prepared if fuel quantities are recorded in this field.					
Fuel chain default value	This field shows the appropriate fuel chain default value, based on the data you supplied on fuel type, feedstock and country of origin.					
Social and Environment	al					
Land use on 01 Jan 2008	The land use, on 1 st January 2008, for the land on which the biofuel feedstock was grown. Definitions of the land use are given in the Technical Guidance for RTFO year 3 Part 1 Annex H.					
Standard	The sustainability standard to which the reported feedstock was produced – see Section 3.3 of the Technical Guidance for RTFO year 3 Part 1 for further details.					
Social level	The 'Social level' achieved by the sustainability standard selected. This fiel will generally not need to be changed.					

UK tool - Summary

Contents

- o Tool build in LCA-software package
- o Tool can produce supplier monthly and annual C&S reports
- o Tool differs from BioGrace Excel sheets:
 - More than 250 biofuel production pathways included
 - DLUC calculations not included
- o The software programming makes it flexible
 - Rather easy to modify pathways or build new ones

Status

- o Tool on-line via <u>www.renewablefuelsagency.gov.uk</u>
 - including a user manual
- o All chains available (and more) but not all chains give same
 - result (yet) as compared to RED defaults

Slide 38 Public workshop Utrecht

• March 21, 2011

: Contents

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Comparison of results

Comparison of results

Check list Version 3.0 February 2011	Default greenhouse gas emissions						
	Table A RED Annex V/FQD Annex IV	BIOGRACE W3		BIOGRACE WP4 National GHG Calculators			
Biofuel production pathways	Default value	1/25/298	1/23/296	The Netherlands ANL	Germany IFEU	Spain CIEMAT	UK
Ethanol wheat lignite	70	69.9	69.8	69.9	67.9		70
Ethanol wheat (proces fuel not specified)	70	69.9	69.8	69.8	67.9		70
Ethanol wheat (natural gas - steam boiler)	55	54.9	54.6	54.6	52.8	55.61	55
Ethanol wheat (natural gas - CHP)	44	44.3	44.1	44.1	42.2		44
Ethanol wheat (straw)	26	26.1	26.0	26.0	24.0		26
Ethanol corn	43	43.6	43.4	43.4	42.6		43
Ethanol sugarbeet	40	40.3	40.1	40.1			Į 40
Ethanol from sugarcane	24	24.3	24.0	24.0	, l		24
Biodiesel rape seed	52	52.0	51.7	51.8		52.51	52
Biodiesel palm oil	68	68.7	66.0	66.0	68.9		68
Biodiesel palm oil (methane capture)	37	37.1	36.9	37.0	36.3		37
Biodiesel soy	58	57.2	56.9	57.0			58
Biodiesel sunflower	41	40.8	40.6	40.6	-		41
Biodiesel UCO	14	21.4	21.3	21.3	<u> </u>		14
PVO rape seed	36	36.1	35.9	31.2			36
HVO rape seed	44	44.5	44.2	44.2		44.57	44
HVO palm oil	62	61.6	58.9	58.9			62
HVO palm oil (methane capture)	29	29.1	29.0	29.0			29
HVO sunflower	32	32.9	32.7	32.7	1		32
Biogas - dry manure	15	14.3	13.0	12.9	-		15
Biogas-wet manure	16	15.8	14.5	14.4			16
Biogas - MSW.	23	22.7	21.4	21.4			23
	1/25/298	1/25/298	1/23/296	1/23/296	1/25/298	1/23/296	
4		Concerning and the second s		Contraction of the form of the second			

Slide 40 Public workshop Utrecht

March 21, 2011

•

: Contents

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Comparison of results

Public workshop Utrecht

March 21, 2011

Slide 41

Conclusions

Several GHG calculators available

- Two exist since 2008, three (including BioGrace Excel sheets) are newly developed
- Project BioGrace will ensure that all calculators will give the same result
 - o Some allow to modify or build new pathways, others don't

National GHG calculators have different aims

- Some are more focussed on national data or national reporting, others are more international oriented
- o Focus on different aspects
 - Agricultural stages (Spain)
 - Supply of data through the chain of custody (Germany)

Slide 42 Public workshop Utrecht March 21, 2011

