

National GHG calculators in Germany and EU – harmonized in co-operation with BioGrace

- Anna Hennecke, Horst Fehrenbach
- IFEU
- Public workshop Heidelberg
- April 14, 2011

0

- 1. Introduction
- 2. German GHG calculator
- 3. Spanish GHG calculator
- 4. UK GHG calculator
- 5. Dutch GHG calculator
- 6. Comparison of results
- 7. Conclusions

Slide 2 Public workshop Heidelberg April 14, 2011

Introduction

1) BioGrace Tool

- Reproduces 22 pathways from EU RED Annex V
- Allows use of individual input numbers

2) Making actual calculations not straightforward

- Some kind of tool or software is needed
 - o Some companies will develop own tools
 - o Many others will use publicly available tools (e.g. national tools)

3) National Tools

- Are being developed in Germany, Spain, Netherlands, UK
- Have different target groups and purposes.

→ Project BioGrace will ensure that all calculators will give the same result

Slide 3 Public workshop Heidelberg April 14, 2011

0

- 1. Introduction
- 2. German GHG calculator
- 3. Spanish GHG calculator
- 4. UK GHG calculator
- 5. Dutch GHG calculator
- 6. Comparison of results
- 7. Conclusions

Slide 4 Public workshop Heidelberg April 14, 2011

German tool - general information

Background

0

- o 7 german tools, 1 tool (palm oil) published online september 27th 2010
- o made by IFEU, contracted by BMU
- o Stakeholder workshop on october 7th 2010 (auditors, WWF, scientific palm oil experts, BLE national regulator)
- o Next workshop on may 5th 2011 (BLE)

The German GHG calculator

- o Focus of national calculator: user friendliness tailored to a narrow target group (non-expert user: farmers, oil millers, refinery operators, last interface)
- o Main differences:
 - strongly linked to economic operators: 1 sheet dedicated for cultivators, mill operators, refinery operators, etc.
 - Reference units for GHG emissions different in each sheet (kg FFB, kg CPO, kg refined oil)

H + > H Start / About / Actor cultivation / Land use change / Carbon Stocks / Actor oil mill / Supplier list oil mill / Actor refinery / Supplier list refinery

Slide 6 Public workshop Heidelberg April 14, 2011

German GHG tool

- One sheet for each economic operator
- Box A: Results
- Box B: step-by-step manual
- Box C: Calculation of emissions

Biofuel Greenhouse Gas Emissions in Europe German GHG tool – Cultivation

BIOGRACE

Harmonised Calculations of

Intelligent Energy Europe

F

K · · N Start / About Actor cultivation / Land use change / Carbon Stocks / Actor oil mill / Supplier lis

German GHG tool

BIOGRACE Harmonised Calculations of

Biofuel Greenhouse Gas Emissions in Europe German GHG tool – Oil miller

German tool - Summary

Contents

- o Excel-based tool
- o The software programming makes it inflexible
 - Not possible to modify pathways or build new ones

Status

- o Palm oil tool available via www.ifeu.de
- o Tools ready but not available online:
 - Cereals-to-ethanol (wheat, barley, rye, triticale, corn)
 - Plant oil (rapeseed, sunflower, soy)
 - Biodiesel
 - Biogas
- o Tools in pipeline
 - Sugarbeet-to-ethanol
 - Sugarcane-to-ethanol
- o Should be finalised mid 2011

Public workshop HeidelbergApril 14, 2011

Slide 13

0

- 1. Introduction
- 2. German GHG calculator
- 3. Spanish GHG calculator
- 4. UK GHG calculator
- 5. Dutch GHG calculator
- 6. Comparison of results
- 7. Conclusions

Slide 14 Public workshop Heidelberg April 14, 2011

Spanish tool - general information

Background

- o No public tool has been available so far in Spain
- Aim: to provide stakeholders (especially farmers and small biofuel companies) with a tool to calculate the GHG emissions required by the RED

The Spanish GHG calculator

- o being developed by CIEMAT, contracted by IDAE
- o focuses on agricultural stages
- o Focus on Spain:
 - Contains data on agricultural inputs and yields for 6 crops used to produce biofuels in Spain at the level of agrarian county (NUTs4)
 - Any farmer in the country can select his/her county and crop and the corresponding values regarding agricultural inputs and yields will appear in the tool.
- uses data from NUTS study (actual values or averages calculated for smaller geographical areas)

Slide 15 Public workshop Heidelberg April 14, 2011

Spanish tool – specificities

Contents

- o Tool build in Java
- o For processing and transport: RED default values
- o Standard values from BioGrace

Status

- o Biodiesel from rapeseed, rapeseed HVO and ethanol from wheat CHP chains ready
- o Final version expected mid-2011

SPANISH BIOFUELS CALCULATOR

Agricultural county selection screen

BIOGRACE

BIOGRACE

0 .

Slide 18

0

0

- 1. Introduction
- 2. German GHG calculator
- 3. Spanish GHG calculator
- 4. UK GHG calculator
- 5. Dutch GHG calculator
- 6. Comparison of results
- 7. Conclusions

Slide 19 Public workshop Heidelberg April 14, 2011

UK tool - general information

Background

- UK GHG calculator was developed under RTFO reporting scheme
- o Calculator existing since 2008, regularly updated
- o Aim is to facilitate stakeholders calculating actual values under RTFO reporting

The UK GHG calculator

- o was made and is regularly updated by consultant E4Tech, contracted by RFA
- o has recently been made "RED-proof"
- o strongly linked to RTFO reporting scheme
- o provides more "standard values" as compared to BioGrace

Public workshop HeidelbergApril 14, 2011

Slide 20

UK tool - Summary

Contents

- o Tool build in LCA-software package
- o Tool can produce supplier monthly and annual C&S reports
- o Tool differs from BioGrace Excel sheets:
 - More than 250 biofuel production pathways included
 - DLUC calculations not included
- o The software programming makes it flexible
 - Rather easy to modify pathways or build new ones

Status

Slide 21

- o Tool on-line via <u>www.renewablefuelsagency.gov.uk</u> including a user manual
- All chains available (and more) but not all chains give same result (yet) as compared to RED defaults

Public workshop Heidelberg April 14, 2011

BIOGRALE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

UK GHG tool

0

- 1. Introduction
- 2. German GHG calculator
- 3. Spanish GHG calculator
- 4. UK GHG calculator
- 5. Dutch GHG calculator
- 6. Comparison of results
- 7. Conclusions

Slide 23 Public workshop Heidelberg April 14, 2011

Dutch tool - General information

Background

- o Dutch government prepared a reporting obligation on sustainability for biofuels to start per 1-1-2009
- o This was abandoned after the publication of the draft Renewable Energy Directive (RED).

The Dutch GHG calculator

- o was developed in 2007/2008 by consultants EcoFys and CE
- o has been available for (Dutch) stakeholders to make GHG calculation on biofuels
- has not been used extensively due to lack of legal framework in 2008 2010

o was recently updated and made "RED"- proof by Agency NL

Public workshop HeidelbergApril 14, 2011

Slide 24

Dutch tool - Summary

Contents

- o Excel-based tool
- o Tool is rather similar to BioGrace Excel sheets, but
 - It is more user-friendly:
 - no calculations details, results in graphs
 - DLUC calculations are user-friendly
- o The software programming makes it less flexible
 - More difficult to modify pathways or build new ones

Status

Slide 25

- o Tool is available on-line via
 - www.senternovem.nl/gave_english/ghg_tool
- o All 22 chains (BioGrace) are included
- o Updates follow updates of BioGrace Excel sheet

Public workshop Heidelberg April 14, 2011

0

- 1. Introduction
- 2. German GHG calculator
- 3. Spanish GHG calculator
- 4. UK GHG calculator
- 5. Dutch GHG calculator
- 6. Comparison of results
- 7. Conclusions

Slide 26 Public workshop Heidelberg April 14, 2011

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe BIOGRACE

Comparison of results

Check list Version 3.0 February 2011	Default greenhouse gas emissions								
	Table A RED Annex V/FQD Annex IV	BIOGRACE W3		BIOGRACE WP4 National GHG Calculators					
Biofuel production pathways	Default value	1/25/298	1/23/296	The Netherlands ANL	Germany IFEU	Spain CIEMAT	ик		
Ethanol wheat lignite	70	69.9	69.8	69.9	67.9		7		
Ethanol wheat (proces fuel not specified)	70	69.9	69.8	69.8	67.9		7		
Ethanol wheat (natural gas - steam boiler)	55	54.9	54.6	54.6	52.8	55.61	5		
Ethanol wheat (natural gas - CHP)	44	44.3	44.1	44.1	42.2		4		
Ethanol wheat (straw)	26	26.1	26.0	26.0	24.0		2		
Ethanol corn	43	43.6	43.4	43.4	42.6		4		
Ethanol sugarbeet	40	40.3	40.1	40.1			4		
Ethanol from sugarcane	24	24.3	24.0	24.0			2		
Biodiesel rape seed	52	52.0	51.7	51.8		52.51	5		
Biodiesel palm oil	68	68.7	66.0	66.0	68.9		6		
Biodiesel palm oil (methane capture)	37	37.1	36.9	37.0	36.3		3		
Biodiesel soy	58	57.2	56.9	57.0			5		
Biodiesel sunflower	41	40.8	40.6	40.6			4		
Biodiesel UCO	14	21.4	21.3	21.3			1		
PVO rape seed	36	36.1	35.9	31.2			з		
HVO rape seed	44	44.5	44.2	44.2		44.57	4		
HVO palm oil	62	61.6	58.9	58.9			6		
HVO palm oil (methane capture)	29	29.1	29.0	29.0			2		
HVO sunflower	32	32.9	32.7	32.7			3		
Biogas - dry manure	15	14.3	13.0	12.9			1		
Biogas-wet manure	16	15.8	14.5	14.4			1		
Biogas - MSW.	23	22.7	21.4	21.4			2		
	1/25/298	1/25/298	1/23/296	1/23/296	1/25/298	1/23/296			

Public workshop Heidelberg

Slide 27 April 14, 2011

0

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Comparison of results
- 7. Conclusions

Slide 28 Public workshop Heidelberg April 14, 2011

Conclusions

Several GHG calculators available

- o Two (UK, Dutch) exist since 2008, three (Germany, Spain, BioGrace Excel sheets) are newly developed
- o Some allow to modify or build new pathways, others don't

National GHG calculators have different aims

- o Some are more focussed on national data or national reporting, others are more international oriented
- o Focus on different aspects
 - Agricultural stages (Spain)
 - Supply of data through the chain of custody (Germany)

→Project BioGrace will ensure that all calculators will give the same result

Public workshop Heidelberg April 14, 2011

Slide 29

Thank you for your attention

Intelligent Energy 🔅 Europe

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union.

The European Commission is not responsible for any use that may be made of the information contained therein.

Public workshop HeidelbergApril 14, 2011

Slide 30

		BIOGRAC Harmoni Biofuel	sed Calculati Greenhouse	ions of Gas Emissions in Euro	be			Intelligent E	inergy 💽		
	А	В	С	D	E	F	G	Н		J	K
70		Which shrinkage factor is a	applied?		_						
71			1,0	%							
72		Emissions transport (inkl.	10,25	g CO2eq per kg ethanol							
73		Emissions cultivation (inc	684,89	g CO2eq per kg wheat							
74											
75		What is the size of your oi	l batch (consignn	nent)?							
76			30.000	kg							
77											
78		STEP 5 - Other greenhouse	gas sources or s	avings							
79		Are there any other sourc	es of greenhouse	gas emissions during your pro	duction process?	. Please describe:					_
30		How much CO2eq arise fro	m these sources	Note that you may be requir	ed to provide det	ailed evidence of this	Help for oil n	nill operator		×	┛
31		number in the auditing pro	ocess	i note that you may be requir	cu to provide det		The S	TEP 5 box allow		include •	а.
32			0	g CO2eq per kg oil.			"outs	ide-the-box" are	enhouse	aas	
		Do you apply any measure	es that reduce CC	02 emissions in your productio	n process? e.g. er	mission savings from	emiss	sions, i.e. to inc	lude area	enhouse	
55		replacing transport diese	with biodiesel. P	lease describe			gas s	ources or saving	as from i	oractices	
34		llew much cookers	example text				that a	are not covered	by the		
35		evidence of this number in	the auditing pro	ures per kg oll? Note that you locess	may be required t	to provide detailed	calcu	lation tool.	,		
36			0	g CO2eq per kg oil.							
37							First	you need to cal	culate th	e CO2	18
28		STEP 6 - Combination of va	lues				emiss	sions or savings	of your		18
39		Pre-products	1.694	g CO₂eg per kg oil			produ	iction practice of	on your o	own	
90		Transport	10	g CO2eq per kg oil			accor	ding to good LO	CA practi	ce. Then	
21		Oil mill	224	a COpea ner ka oil			VOUA	ntor the recult i	in the ar	non 🔳	
e e e	+ +	Land use change / Carbor	Stocks Actor oi	I mill / Supplier list oil mill / Actor	refinery / Supplier	list refinery		close window			
					and the second						
										(s(c)	0.001

0