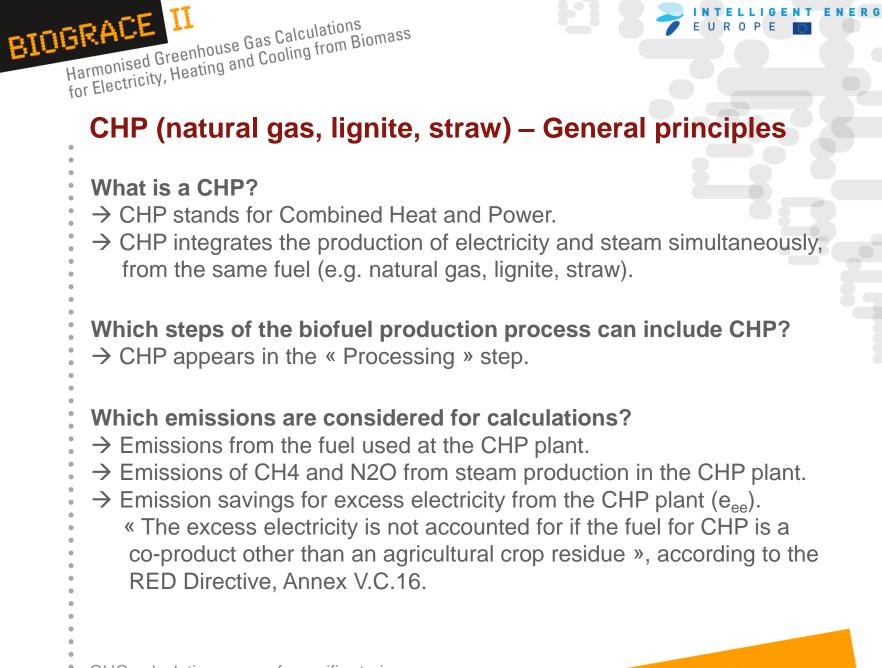

CHP, Land use change, N_2O field emissions

- By Perrine LAVELLE, Grégoire THONIER
- Bio Intelligence Service
- GHG calculation course for verifier trainers
- September 10th and 11th, 2012, at Agency NL (Utrecht, Netherlands).

- Summary
- 1. CHP (natural gas, lignite, straw), natural gas boiler (30 min)
- 2. Land use change and N2O field emissions (45 min)
- 3. Exercise including CHP, land use change and N2O field emissions (60 min)
- 4. CO2 storage or replacement + example (30 min)


Slide 2 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.

1. CHP (natural gas, lignite, straw), natural gas boiler

GHG calculation course for verifier trainers Slide 4 September 10th and 11th, 2012, at Agency NL.

Slide 5 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL

CHP (natural gas, lignite, straw) – Calculation rules

- What is the methodology to make calculations in BioGrace?
- \rightarrow Directions from the RED Directive, Annex V.C.16 are followed:

"Emission saving from excess electricity from cogeneration, e_{ee}, shall be taken into account in relation to the excess electricity produced by fuel production systems that use cogeneration except where the fuel used for the cogeneration is a co-product other than an agricultural crop residue. In accounting for that excess electricity, the size of the cogeneration unit shall be assumed to be the minimum necessary for the cogeneration unit to supply the heat that is needed to produce the fuel. The greenhouse gas emission saving associated with that excess electricity shall be taken to be equal to the amount of greenhouse gas that would be emitted when an equal amount of electricity was generated in a power plant using the same fuel as the cogeneration unit." (in the RED Directive, Annex V.C.16)

 \rightarrow The text gives directions but no actual calculation steps.

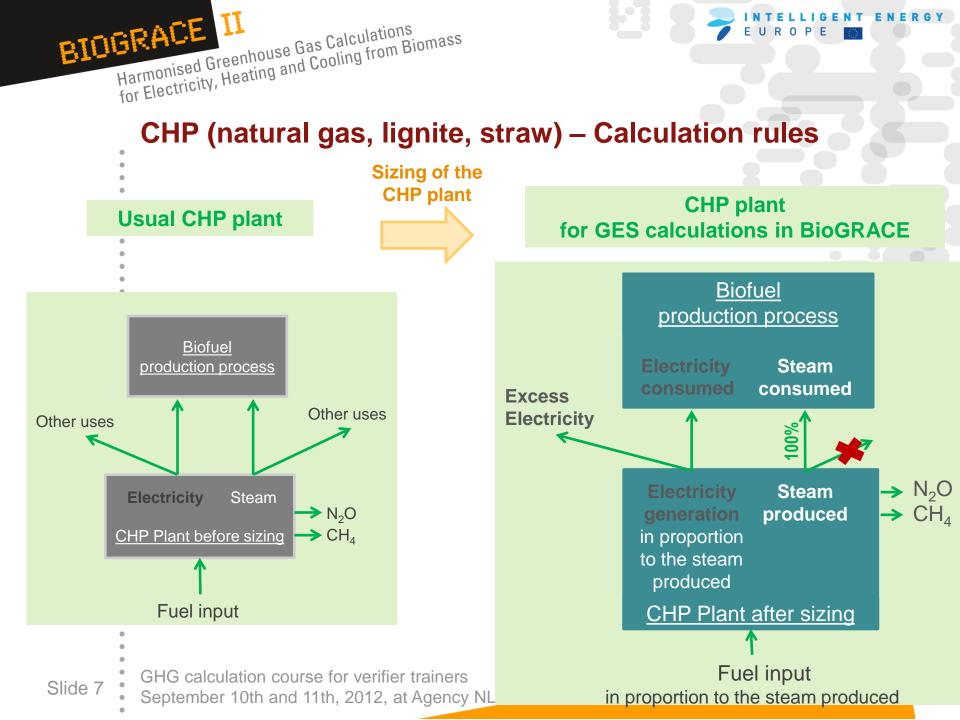
 \rightarrow Direction 1: Annex V.C.16 of the RED Directive states that the excess electricity credits from CHP are calculated in proportion to the steam consumed by the production process of the biofuel:

"The size of the cogeneration unit shall be assumed to be the minimum necessary for the

cogeneration unit to supply the heat that is needed to produce the fuel" (in the RED

Directive, Annex 5.C.16)

BIOGRACE II


Harmonised Greenhouse Gas Calculations

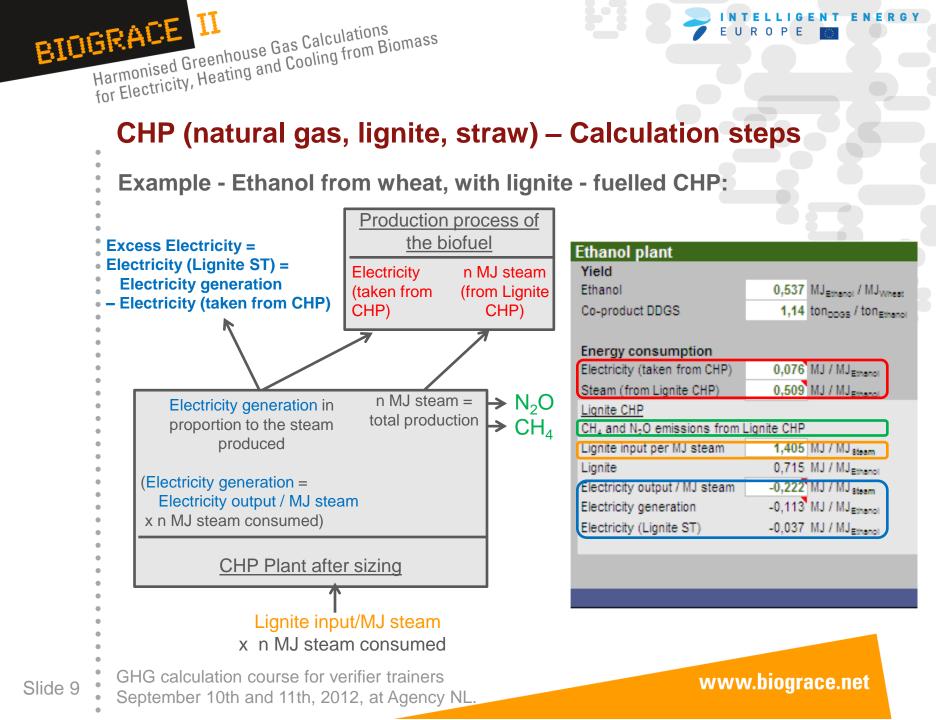
for Electricity, Heating and Cooling from Biomass

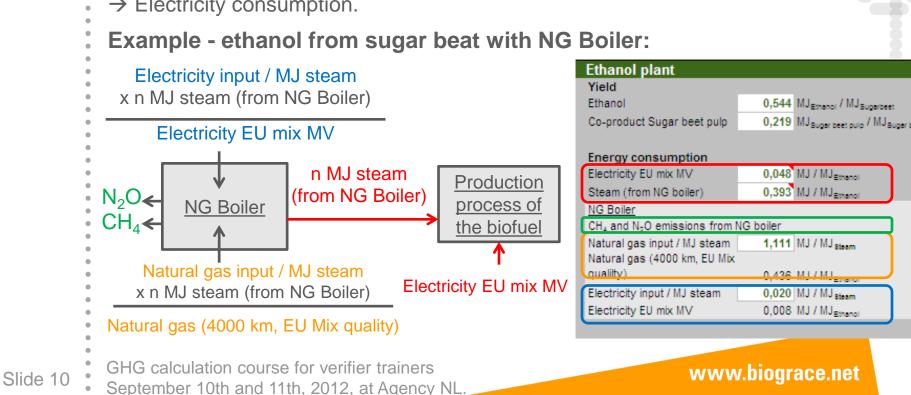
GHG calculation course for verifier trainers Slide 6 September 10th and 11th, 2012, at Agency NL.

www.biograce.net

NTELLIGENT ENERG

CHP (natural gas, lignite, straw) – Calculation rules


\rightarrow Direction 2:


"The greenhouse gas emission saving associated with that excess electricity shall be taken to be equal to the amount of greenhouse gas that would be emitted when an equal amount of electricity was generated in a power plant using the same fuel as the cogeneration unit." in the RED Directive, Annex V.C.16

Credits for excess electricity refer to the avoided impact of the production of electricity in a plant powered with the same fuel as in the CHP plant.

 \rightarrow In version 4c of the Biograce tool: the « EU mix » may not be used for electricity from the grid (i.e. an additional standard value must be defined and used for the grid average emissions for the country in which electricity is taken from the grid).

GHG calculation course for verifier trainers Slide 8 September 10th and 11th, 2012, at Agency NL.

Natural gas boiler – Calculation steps

Which steps of the biofuel production process can include NG Boiler?

INTELLIGENT ENERGY

 \rightarrow Natural Gas Boiler appears in the « Processing » step.

Which emissions are considered for calculations?

- \rightarrow Emissions from Natural Gas input.
- \rightarrow Emissions of CH₄ and N₂O from steam production.
- \rightarrow Electricity consumption.

Harmonised Greenhouse Gas Calculations

for Electricity, Heating and Cooling from Biomass

BIOGRACE II

Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

Land use change 2. and N2O field emissions

GHG calculation course for verifier trainers Slide 11 September 10th and 11th, 2012, at Agency NL.


Land Use Change – General principles

Types of land cover to be considered in LUC:

- Forest land, grassland, cropland, wetlands, settlements and other lands (IPCC categories), perennial crops (in [OJ C160, p.8]).

- LUC can be either:
- direct: conversion of a land that is cultivated or not to biofuel production land or
- indirect (ILUC): the land used for biofuel production was previously used for food crops' production. Because of food demand, additional land will be used for food crops. NOT yet taken into account in calculation !

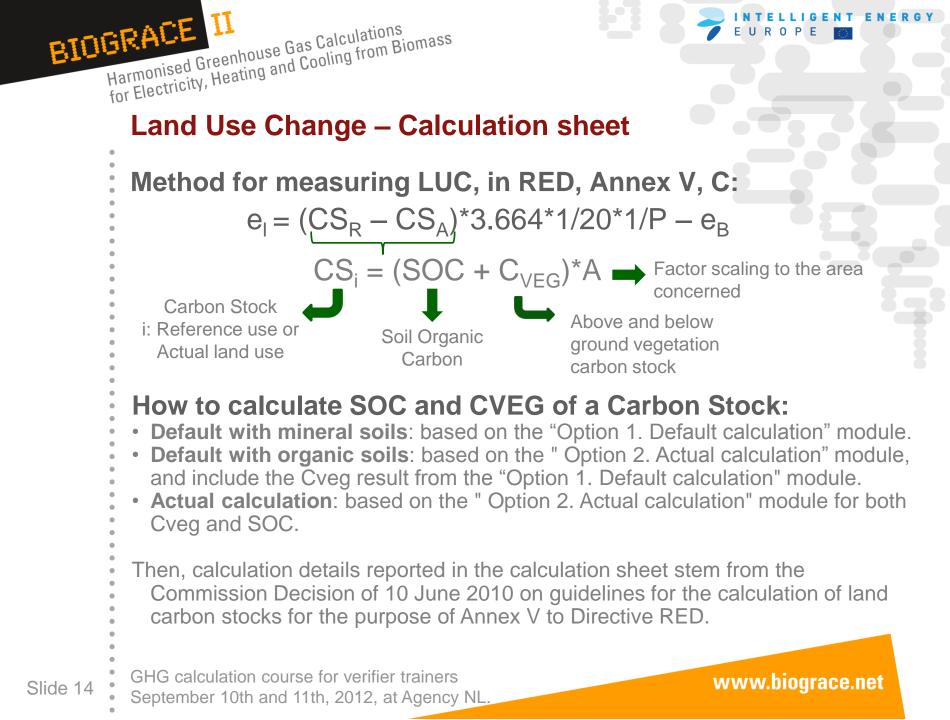
Measure of (direct) land use change:

Land Use Change – Issues for biofuels

Issues regarding GHG emissions:

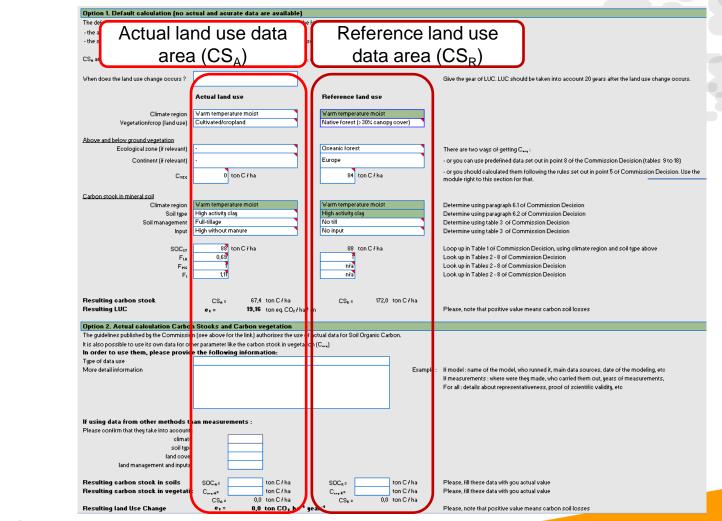
- ILUC for biofuels, combined with an intense food demand, are suspected
- to lead to a higher demand for crop land, and thus higher GHG emissions.
- Some recent studies suspect that ILUC might have important impacts, for
- example in the biodiesel industry. *
- Albeit ILUC is mentioned in the RED Directive, it will be accounted for only when appropriate methodology is validated by the European Commission.

LUC is critical to define biofuels as a renewable energy:


- To comply with the European Directive 2009/30/EC:
- a biofuel is considered a renewable energy if its use leads to a 35% GHG

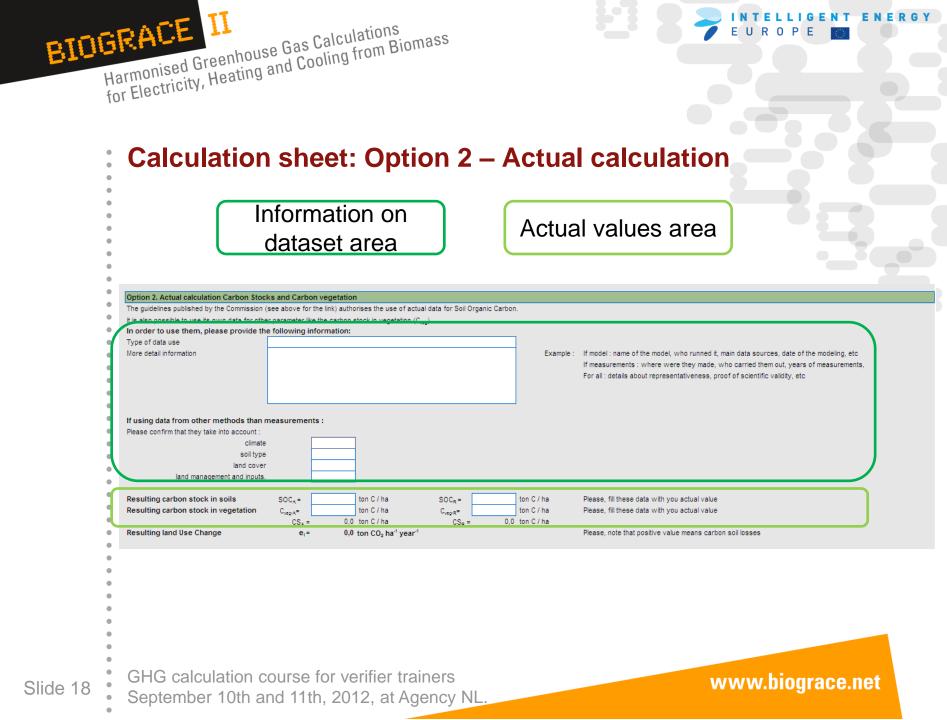
emission reduction at least (Article 7b.2 on the sustainability criteria for

- biofuels).
- Depending on the scenario, LUC impacts can vary a lot: LUC from rainforest to
- palm oil plantation makes it hard to comply with the 35% criterion whereas LUC from grassland to palm oil plantation leads to good GHG emission savings.


"Assessing the Land Use Change Consequences of European Biofuel Policies" by David Laborde, IFPRI, October 2011.

GHG calculation course for verifier trainers Slide 13 September 10th and 11th, 2012, at Agency NL.

Calculation sheet: Actual and Reference land uses

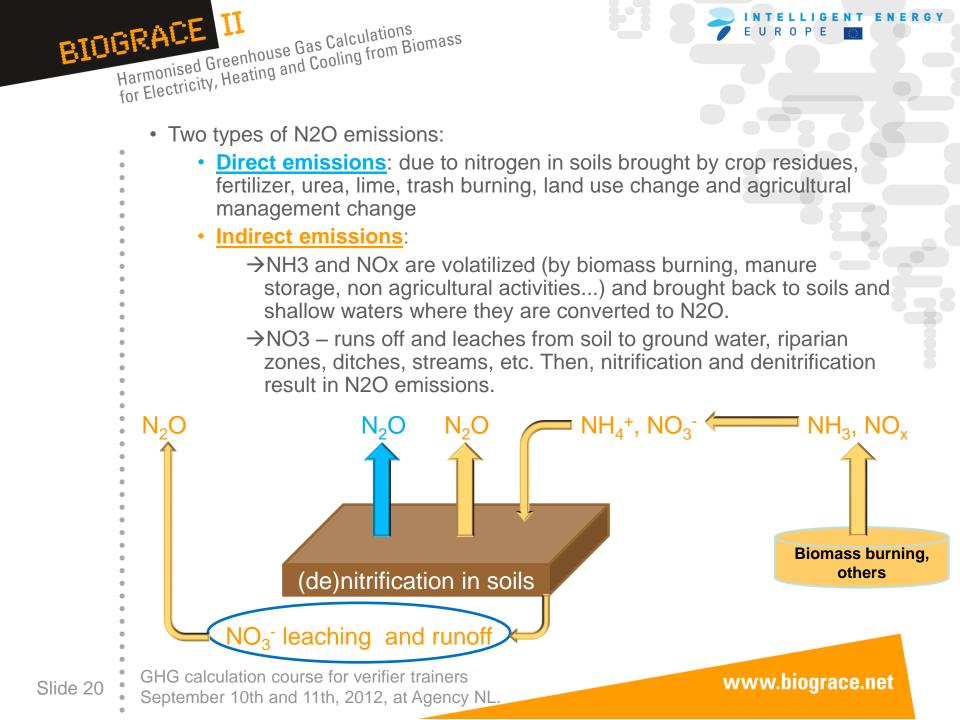

Slide 15 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL

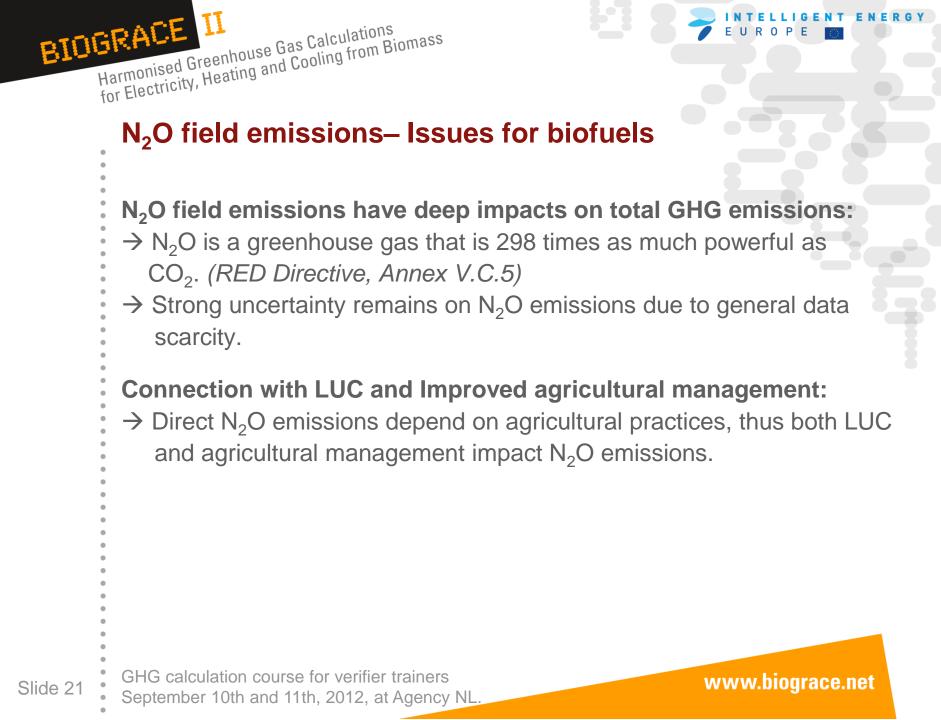
www.biograce.net

LIGENT ENERGY

BIOG H	RACE II Iarmonised Greenhou or Electricity, Heating Calculatio			
•	LUC definiti	on	C _{VEG} data an based on predefin 8, Commission Decisio	rea, ned data SOC data area
•	- the area concerned is 1 hectare. As a res	culation of the Commission Decision, with the t ult, the factor A (ha / area concerned) equals		l.
•	CS _A and CS _B are calculated with the followin When does the land use change occurs ? Climate region Vegetation/crop (land use)	Actual land use Warm temperature moist Cutivated/cropland	S _I = C _{VED} + SOC _{ST} * F _{LU} * F _{IMS} * F _I Reference land use Warm temperature moist Native forest (>30% canopy cover)	Give the year of LUC. LUC should be taken into account 20 years after the land use change occurs.
•	Above and below ground vegetation Ecological zone (if relevant) Continent (if relevant) C _{VES}		Oceanic forest Europe 84 ton C / ha	There are two ways of getting C _{vep} : - or you can use predefined data set out in point 8 of the Commission Decision (tables 9 to 18) - or you should calculated them following the rules set out in point 5 of Commission Decision. Use the module right to this section for that
•	Carbon stock in mineral soil Climate region Soil type Soil management Input	Warm temperature moist High activity clay Full-tillage High without manure	Warm temperature moist High activity clay No till No input	Determine using paragraph 6.1 of Commission Decision Determine using paragraph 6.2 of Commission Decision Determine using table 3 of Commission Decision Determine using table 3 of Commission Decision
•	SOC _{ST} F _{LU} F _{MS} F ₁	88 ton C / ha 0,69 1 1,11	88 ton C / ha 1 n/a n/a	Loop up in Table 1 of Commission Decision, using climate region and soil type above Look up in Tables 2 - 8 of Commission Decision Look up in Tables 2 - 8 of Commission Decision Look up in Tables 2 - 8 of Commission Decision
•	V of Directive 2009/28	3/EC	guidelines for the calcul	Please, note that positive value means carbon soil losses ation of land use carbon stocks for the purpose of Annex
ide 16		course for verifier t and 11th, 2012, at <i>i</i>		www.biograce.net

BIOG	RACE II Aarmonised Greenhouse Gas Calculations For Electricity, Heating and Cooling from Biomass Calculation sheet: Option 1 – Default calculation
	C _{VEG} data area, based on calculated data (point 5, Commission Decision*)
	Cere calculation, if carried out under point 5 of the Commission Decision : details of the calculation For more explaination, please read the Commission Decision of the 10 june 2010, point 5 Reference land use : Cere = Cere Cere = Cere
	* Commission Decision of 10 June 2010 on guidelines for the calculation of land use carbon stocks for the purpose of Annex V of Directive 2009/28/EC
Slide 17	GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.


N₂O field emissions – General principles


- Measure of the direct and indirect N₂O emissions from
 - managed soils (kg N₂O/ha/year):
- N₂O emissions are estimated depending on the quantity of N in
- soils coming from human activity or from organic matter
- mineralization.

Measure of N₂O emissions following the IPCC guidelines:

- The methodology used is the Tier 1 of IPCC guidelines 2006 for
- N_2O emission calculation Chap.11 " N_2O emissions from
- managed soils and CO₂ emissions from lime and urea application".
- A new methodology using the Stehfest & Bouwman statistical model combined with IPCC Tier1 approach, will be used for the calculations after it is presented by the Commission

GHG calculation course for verifier trainers Slide 19 September 10th and 11th, 2012, at Agency NL.

BIO	GRACE II Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass	7	E U R	ULIGE OPE	NTEN
	N ₂ O field emissions– Calculation sheet When to use the "N ₂ O emissions IPCC" calculati	on s	heet	?	
	When making the actual calculation for the "cultiva	tion"	step	85	
	Cultivation of sunflower Quantity of product Yield Yield Sunflowerseed 2.440 Moisture content 10,0% Co-product Straw n/a kg ha ^{rt} year ^{rt} 0,068 kg ha ^{rt} year ^{rt} 0,068	Emission	ted emission is per MJ FAMB g CH4 g N3	E	
	Energy consumption Diesel 2 963 MJ ha ⁻¹ year ⁻¹	7,21	0,00	0,00 7,21	
	Agro chemicals N-fertiliser (kg N) 39,0 kg N ha ⁻¹ year ⁻¹ Manure 0,0 kg N ha ⁻¹ year ⁻¹ CaO-fertiliser (kg CaO) 0,0 kg CaO ha ⁻¹ year ⁻¹ K ₂ O-fertiliser (kg K ₂ O) 22,0 kg K ₂ O ha ⁻¹ year ⁻¹ P ₂ O ₃ -fertiliser (kg P ₂ O ₃) 30,0 kg P ₂ O ₃ ha ⁻¹ year ⁻¹ Pesticides 2,0 kg ha ⁻¹ year ⁻¹	3,06 0,00 0,33 0,80 0,55	0,00 0,00 0,00 0,00	0,01 6,41 0,00 0,00 0,00 0,00 0,00 0,35 0,00 0,84 0,00 0,61	
	Seeding material Seeds- sunflower 6 kg ha ⁻¹ year ⁻¹	0,07	0,00	0,00 0,12	
	N20 emissions IPCC	0,00 otal 12,02	0,01	0,04 11,86 0,05 27,41	
	Structure of the BioGrace Excel sheet:	ult	g CO _{2.eq} / MJ _{FAN}	⊫ 27,41	
	Part 1: Crop data				
	 Part 2: Direct N₂O emissions from managed soils Part 2: Indirect NLO emissions from managed soils 				
	 Part 3: Indirect N₂O emissions from managed soils Part 4: Total N₂O emissions 				
Slide 22	GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.	V	vww.b	biograc	e.net:

INTELLIGENT ENERGY

Part 1: Crop data

Slide 23

- Eight crops are predefined in the "crop name" field.
- For other crops, tables 1 and 4 have to be used. Guidelines appear
- in IPCC guidelines 2006 Chap.11, Table 11.2 (*).
- LUC and Esca sheet must be used for Carbon loss calculation if applicable

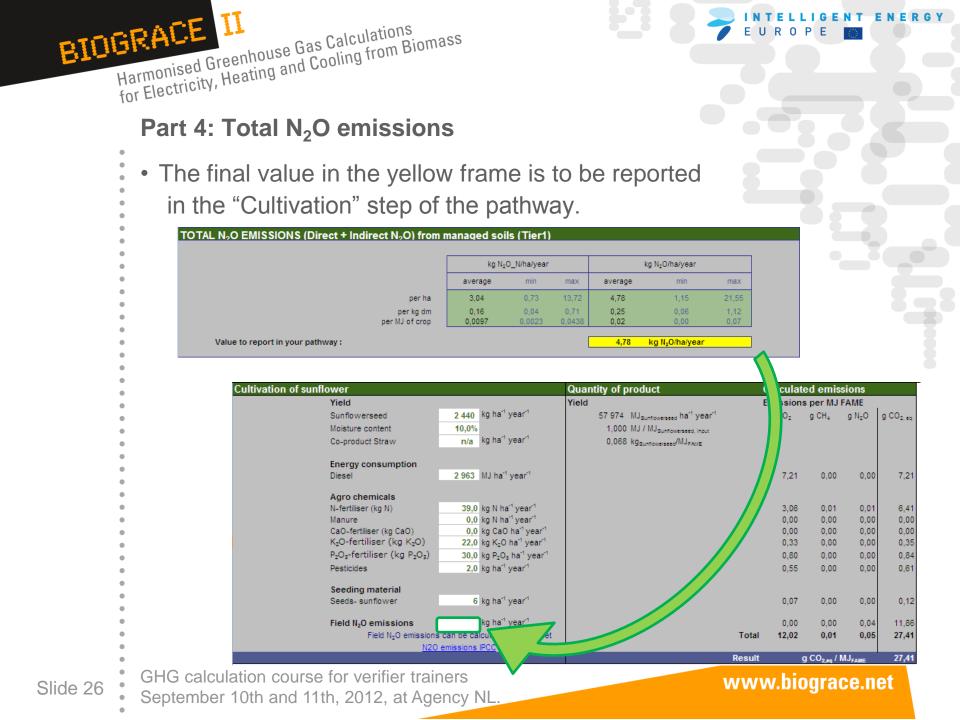
Crop data.				
Please enter the data for your crop in the blue cells				
General information				_
Crop nam	e Sugar beet		Abbreviation glossary :	
		•		
Crop yield (fresh matter		kg _{fm} /ha/year	Fresh matter = fm	
Humidity(% Crop yield (dry matter		kg _{am} /ha/year	Dry matter dm Ton t	
Straw yield (removed from the field		kg dm/ha/year	N mass in N ₂ O N2O_N	
			Turket the second is independent OD without	
Is the soil water saturation high	? yes		s"when the crop is irrigated OR when us potencial evaporation is higher than	
			y. If not known, the average nitrate lea	
		(1) Rainy	season: period when rainfall > 0.5 * Pan Evap	pration
Specific information in case of Land Use Change or modified manage What type of land use change is it ?		(Use "arable to arable land" in case of	f modified practices
Carbon loss due to land use change is it /		t/ha/year	Please, calculate this value by using	
			or the Escasheet for modified practic	
		(2) If the l	Esca sheet gives negative value then there is	a C loss due to a change in
			ment and the value obtained (with a positive s	
Specific information for some imported crops	Please, fill in the f	ollowing cells only wh	ien a text appears. Default	value used by RED
	Text appears wh	ien the adequate impo	rted crop is selected in the above sec	ion (cell C19).
		Taba	filled in the e	to one of
			filled in the c	ases of
		sugar	cane or paln	orone
		Suyai	calle of pain	T CIOPS
DOG IDCC Cuidalinas for National Crossbaus	o Coo Inu	ntorios Ch	antar 11 an N20 a	missions from
06 IPCC Guidelines for National Greenhous	e Gas Inve	entories, Cr	Tapter II on N2O e	missions from
letien eeuwee fer verifier treis ere				
ation course for verifier trainers			WW	w.biograce
10th and 11th, 2012, at Agency NL.				

Part 2: Direct N₂O emissions from managed soils

- N synthetic fertilizer and N organic fertilizer quantities are required.
- Detailed calculations are displayed on Tables 2, 3, 4 and 5.

Direct N ₂ O emissions from managed soils (Tier1).		See Table 2, Ta	ble 3, Table 4 a	nd Table 5	for intermediate	calculations (right	side of the th	his sheet
Please enter the N additions in the form of synthetic or org	anic fertilizer in the	blue cells						
N ₂ O emissions from N inputs:								
	Fan	119,70	kg N/ha/year	N in synti	hetic fertilizer			
	Fon	0,00	kg N/ha/year	N in orga	nic fertilizer			
	For	119	kg N/ha/year	N in crop	residues			
	F _{SOM}	0,00	kg N/ha/year	N mineral	lized			
		average	min	max				
Emission factor for direct emission (IPCC Tier 1)	EF ₁	1,0%	0,3%	3,0%]			
		kg N	l ₂ O_N/ha/year		ł	kg N₂O/ha/year]
		average	min	max	average	min	max	
Calculated Direct N ₂ O emissions	N ₂ O_N _{N Inputs}	2,38	0,72	7,15	3,75	1,12	11,24	Eq.1
Other direct N ₂ O emissions (trash burning)		data appears o	nly when requir	ed				
		kg N	l ₂ O_N/ha/year		ł	kg N ₂ O/ha/year		
						' 		J
TOTAL direct N ₂ O emissions								1
			l ₂ O_N/ha/year			kg N₂O/ha/year		
		average	min	max	average	min	max	
TOTAL Direct N ₂ O Emissions :		2,384	0,715	7,153	3,747	1,124	11,240	

Slide 24 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.

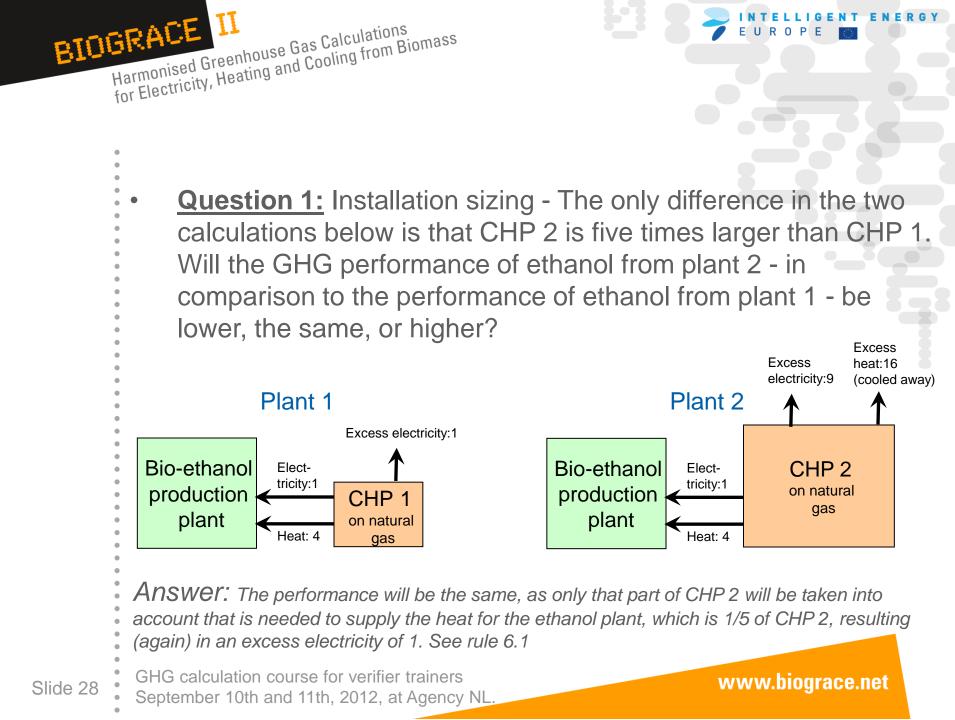

Part 3: Indirect N₂O emissions from managed soils

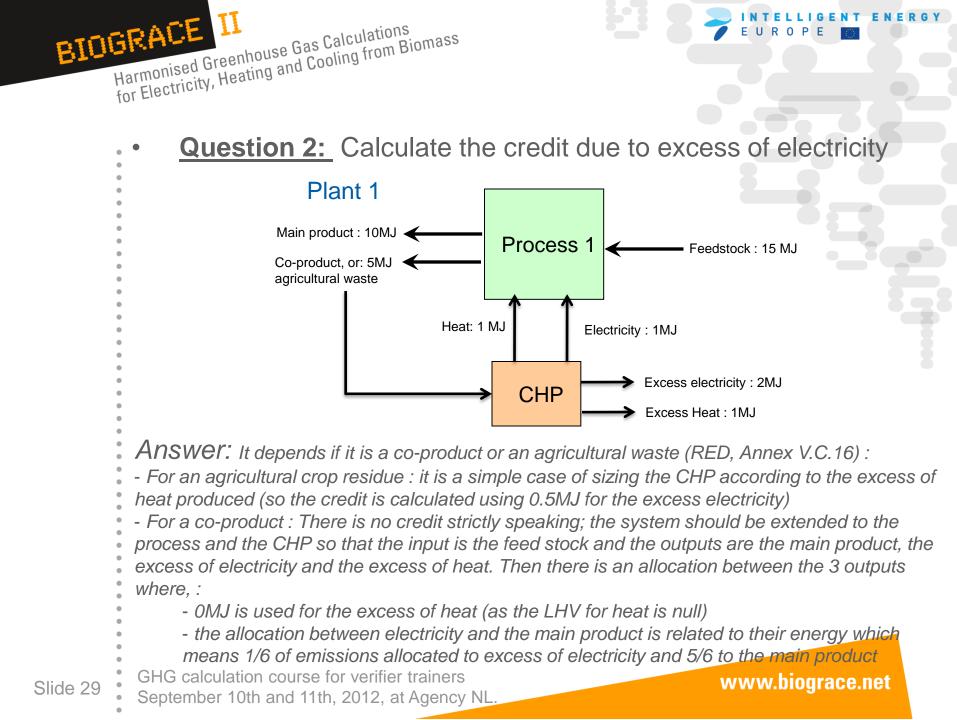
- Calculations are automatic.
- Tables 6 and 7 show calculations for N_2O indirect emissions
 - due to :
 - NH₃ and NO_x volatilisation
 - leaching and runoff

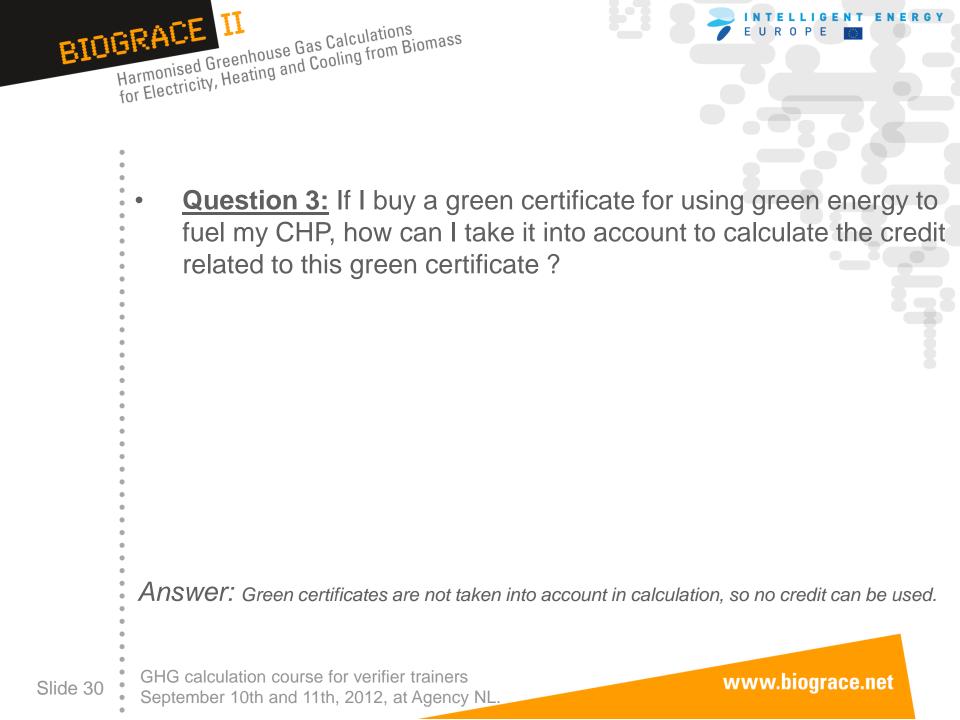
irect N ₂ O emissions from managed soils (Tier1)				Tor Internieur	ate calculations (right s	
		average	min	max		
Quantity of NH ₃ volatilized(IPCC Tier 1):	NH ₃ N (kg)	12,0	3,6	35,9		
Quantity of nitrate leaching (IPCC Tier 1):	NO ₃ N (kg)	71,5	23,8	190,7		
Emission factor for NH ₃ volatilization (IPCC Tier 1):	EF ₄ (%)	1,0%	0,2%	5,0%		
Emission factor for Nitrate leaching (IPCC Tier 1):	EF _ε (%)	0.75%	0.1%	2.5%		

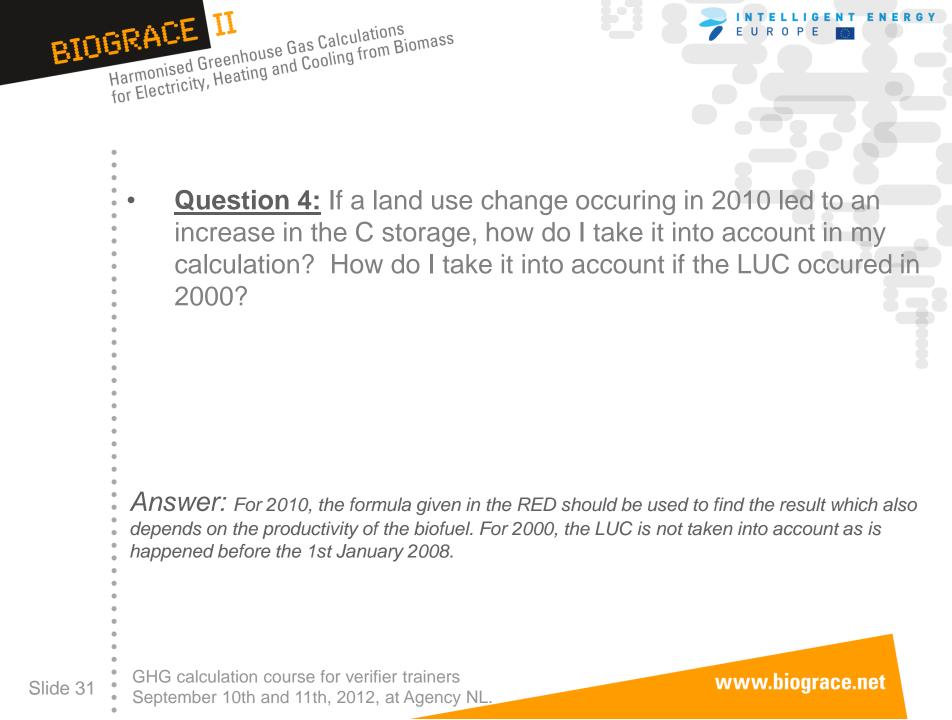
		kg N	2O_N/ha/year		k	g N ₂ O/ha/year	
N ₂ O from atmospheric deposition of N volatilised:	N ₂ O(ATD)-N	0,12	0,007	1,80	0,19	0,01	2,82
Emission of N ₂ O from nitrate leaching effect:	N ₂ O(L)-N	0,54	0,012	4,77	0,84	0,02	7,49

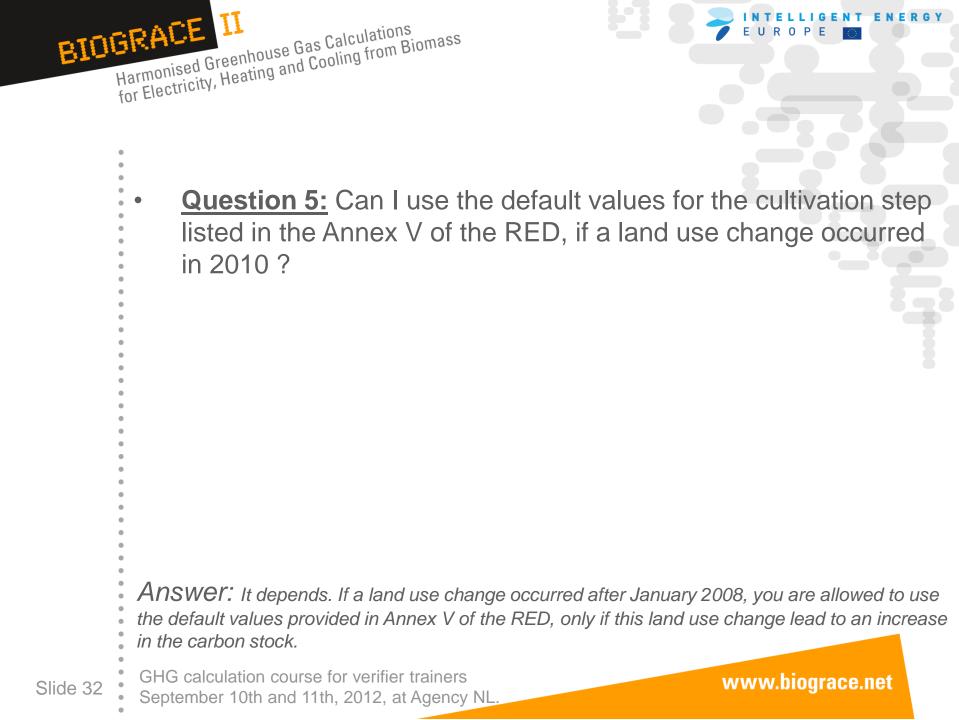
Slide 25 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.

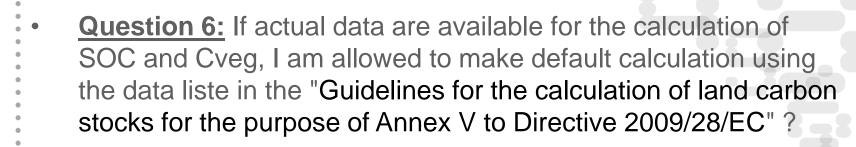


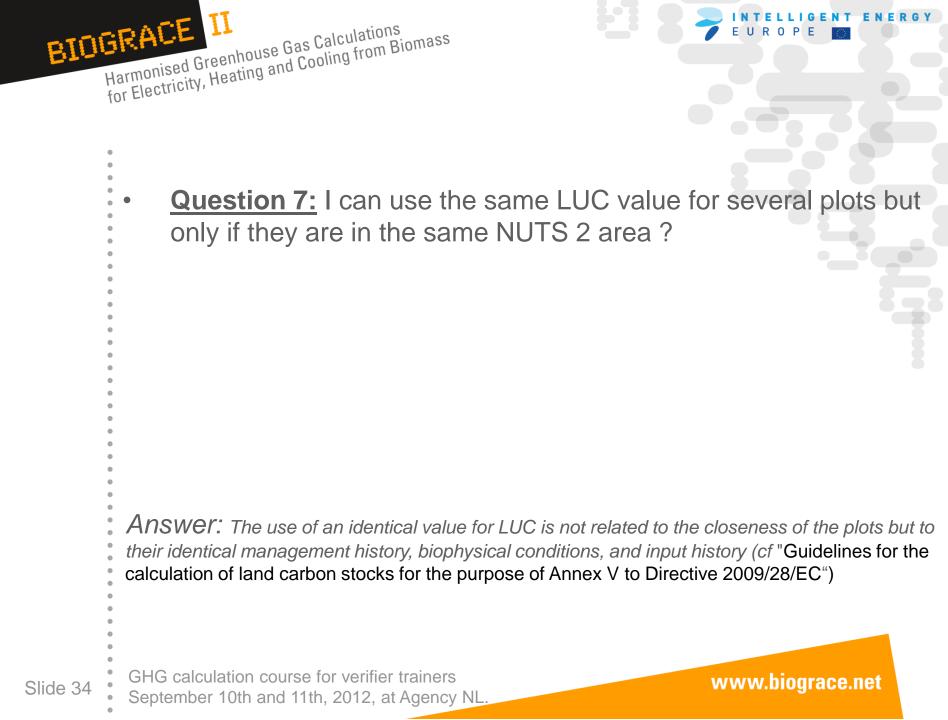


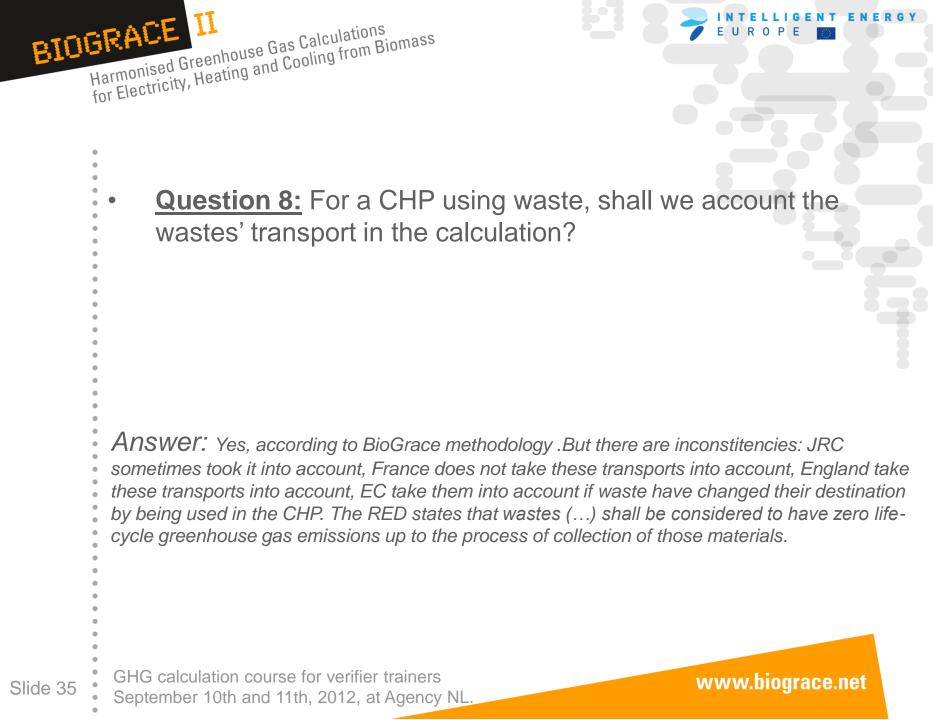

Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass


Exercise including CHP, land use 3. change and N₂O field emissions


GHG calculation course for verifier trainers Slide 27 September 10th and 11th, 2012, at Agency NL,







Answer: Yes, it is always possible to use both possibilities

Slide 33 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL

 <u>Question 9:</u> The excess electricity from the ethanol plant is -0,113 MJ/MJ_{Ethanol} with the following data: right or wrong?

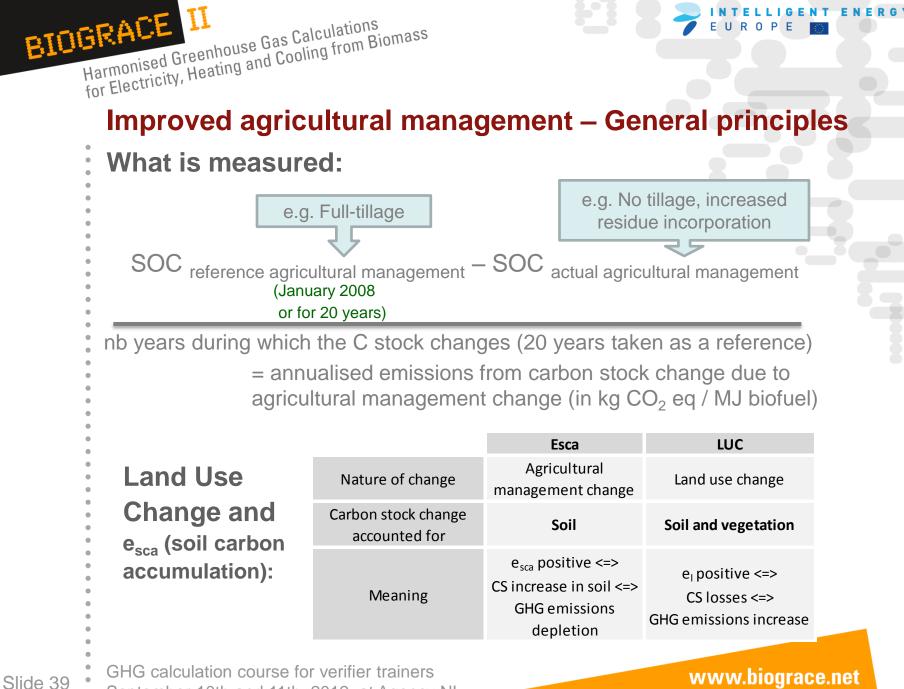
Yield Ethanol 0,361 MJ_Binanol / MJ_Bugercard Co-products 0,000 MJ / MJ_Buger card Energy consumption Electricity (taken from CHP) 0,076 MJ / MJ_Binanol Steam (from CHP) 0,509 MJ / MJ_Binanol CHP Size of CHP Steam prod. considered 0,509 MJ / MJ_Binanol Input to CHP Fuel input / MJ steam 1,405 MJ / MJ_Binanol Fuel input per MJ ethanol 0,715 MJ / MJ_Binanol Emissions from CHP CH4_ and N2O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ_Binanol	Ethanol plant		
Co-products 0,000 MJ / MJ _{Buger care} Energy consumption Electricity (taken from CHP) 0,076 MJ / MJ _{Binanol} Steam (from CHP) 0,509 MJ / MJ _{Binanol} CHP Size of CHP Steam prod. considered 0,509 MJ / MJ _{Binanol} Input to CHP Fuel input / MJ steam 1,405 MJ / MJ _{Binanol} Fuel input / MJ steam 1,405 MJ / MJ _{Binanol} Emissions from CHP CH ₂ Fuel input per MJ ethanol 0,715 MJ / MJ _{Binanol} Emissions from CHP CH ₄ and N ₂ O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Binanol} Electricity generation in CHP plant CHP net output / MJ steam 0,222 MJ / MJ _{Binanol} Electricity - specify 0,037 MJ / MJ _{Binanol} Pure CaO for processes 0,000670 kg / MJ _{Emanol} Electricity - specify 0,037 MJ / MJ _{Binanol} Electricity - specify 0,037 MJ / MJ _{Binanol} Electricity - specify 0,037 MJ / MJ _{Binanol}		Yield	
Co-products 0,000 MJ / MJ _{Buger care} Energy consumption Electricity (taken from CHP) 0,076 MJ / MJ _{Binanol} Steam (from CHP) 0,509 MJ / MJ _{Binanol} CHP Size of CHP Steam prod. considered 0,509 MJ / MJ _{Binanol} Input to CHP Fuel input / MJ steam 1,405 MJ / MJ _{Binanol} Fuel input per MJ ethanol 0,715 MJ / MJ _{Binanol} Emissions from CHP 0,715 MJ / MJ _{Binanol} CHP fuel - specify 0,715 MJ / MJ _{Binanol} Emissions from CHP CH ₄ and N ₂ O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Binanol} Electricity generation in CHP plant CHP fuel - specify CHP net output / MJ steam 0,222 MJ / MJ _{Binanol} Electricity - specify 0,037 MJ / MJ _{Binanol} Electricity - specify 0,037 MJ / MJ _{Binanol} Pure CaO for processes 0,000670 kg / MJ _{Binanol} Pure CaO for processes 0,000670 kg / MJ _{Binanol} Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Binanol}		Ethanol	0,361 MJ _{Ethanol} / MJ _{Bugarcane}
Energy consumption Electricity (taken from CHP) 0,076 MJ / MJ_Bmanol Steam (from CHP) 0,509 MJ / MJ_Bmanol CHP Size of CHP Steam prod. considered 0,509 MJ / MJ_Bmanol Input to CHP Fuel input / MJ steam 1,405 MJ / MJ_Bmanol Puel input per MJ ethanol 0,715 MJ / MJ_Bmanol Emissions from CHP CH input / MJ steam 1,405 MJ / MJ_Bmanol Emissions from CHP CH4, and N20 emissions from CHP (to be further specified - gi CH2 fuel - specify 0,715 MJ / MJ_Bmanol CHP fuel - specify 0,715 MJ / MJ_Bmanol Electricity generation in CHP plant CHP net output / MJ steam 0,222 MJ / MJ_Bmanol Electricity generation in CHP plant 0,037 MJ / MJ_Bmanol N13 MJ / MJ_Bmanol Electricity - specify 0,037 MJ / MJ_Bmanol Electricity - specify 0,037 MJ / MJ_Bmanol Pure CaO for processes 0,000670 kg / MJ_Bmanol Electricity - specify 0,037 MJ / MJ_Bmanol But on in ethanol plant -0,037 MJ / MJ_Bmanol Electricity - specify 0,000670 kg / MJ_Bm		Co-products	
Electricity (taken from CHP) 0,076 MJ / MJ Ethanol Steam (from CHP) 0,509 MJ / MJ Ethanol CHP Size of CHP Steam prod. considered 0,509 MJ / MJ Ethanol Input to CHP Fuel input / MJ steam 1,405 MJ / MJ Ethanol Fuel input / MJ steam 1,405 MJ / MJ Ethanol 0,715 MJ / MJ Ethanol Emissions from CHP 0,715 MJ / MJ Ethanol 0,715 MJ / MJ Ethanol CHP fuel - specify 0,715 MJ / MJ Ethanol 0,715 MJ / MJ Ethanol CHP fuel - specify 0,715 MJ / MJ Ethanol 0,715 MJ / MJ Ethanol CHP fuel - specify 0,715 MJ / MJ Ethanol 0,715 MJ / MJ Ethanol CHP net output / MJ steam 0,222 MJ / MJ Ethanol 0,113 MJ / MJ Ethanol CHP net output / MJ Ethanol 0,113 MJ / MJ Ethanol 0,037 MJ / MJ Ethanol Net production or consumption in ethanol plant -0,037 MJ / MJ Ethanol 0,0037 MJ / MJ Ethanol Pure CaO for processes 0,000670 kg / MJ Ethanol 0,00040 kg / MJ Ethanol 0,000598 kg / MJ Eth			
Steam (from CHP) 0,509 MJ / MJ _{Ethanol} CHP Size of CHP Steam prod. considered 0,509 MJ / MJ _{Ethanol} Input to CHP Fuel input / MJ steam 1,405 MJ / MJ _{Ethanol} Fuel input / MJ steam 1,405 MJ / MJ _{Ethanol} 0,715 MJ / MJ _{Ethanol} Emissions from CHP 0,715 MJ / MJ _{Ethanol} 0,715 MJ / MJ _{Ethanol} CH4, and N2O emissions from CHP (to be further specified - gi 0,715 MJ / MJ _{Ethanol} CHP fuel - specify 0,715 MJ / MJ _{Ethanol} 0,715 MJ / MJ _{Ethanol} CHP fuel - specify 0,715 MJ / MJ _{Ethanol} 0,113 MJ / MJ _{Ethanol} CHP net output / MJ steam 0,222 MJ / MJ _{Ethanol} 0,113 MJ / MJ _{Ethanol} CHP net output / MJ Ethanol 0,113 MJ / MJ _{Ethanol} 0,037 MJ / MJ _{Ethanol} Net production or consumption in ethanol plant -0,037 MJ / MJ _{Ethanol} 0,0037 MJ / MJ _{Ethanol} Pure CaO for processes 0,000670 kg / MJ _{Ethanol} 0,00040 kg / MJ _{Ethanol} 0,000598 kg / MJ _{Ethanol}		Energy consumption	
CHP Size of CHP Steam prod. considered 0,509 MJ / MJ _{Ethanol} Input to CHP Fuel input / MJ steam 1,405 MJ / MJ _{Ethanol} Fuel input per MJ ethanol 0,715 MJ / MJ _{Ethanol} Emissions from CHP 0,715 MJ / MJ _{Ethanol} CH4 and N2O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Ethanol} CHP fuel - specify 0,715 MJ / MJ _{Ethanol} CHP fuel - specify 0,715 MJ / MJ _{Ethanol} CHP net output / MJ steam 0,222 MJ / MJ _{Ethanol} Electricity generation in CHP plant 0,113 MJ / MJ _{Ethanol} CHP net output / MJ Steam 0,222 MJ / MJ _{Ethanol} Net production or consumption in ethanol plant -0,037 MJ / MJ _{Ethanol} Electricity - specify 0,037 MJ / MJ _{Ethanol} Pure CaO for processes 0,000670 kg / MJ _{Ethanol} Cycle-hexane 0,00040 kg / MJ _{Ethanol} Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Ethanol}		Electricity (taken from CHP)	0,076 MJ / MJ _{Ethanol}
Size of CHP Steam prod. considered 0,509 MJ / MJ _{Ethanol} Input to CHP Fuel input / MJ steam 1,405 MJ / MJ _{Ethanol} Emissions from CHP 0,715 MJ / MJ _{Ethanol} CH ₄ and N ₂ O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Ethanol} CH ₄ and N ₂ O emissions from CHP (to be further specified - gi CH ₄ and N ₂ O emissions from CHP (to be further specified - gi CH ₄ und N ₂ O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Ethanol} Electricity qeneration in CHP plant CHP net output / MJ steam 0,222 MJ / MJ _{Ethanol} Net production or consump- 0,037 MJ / MJ _{Ethanol} Net production or consump- 0,037 MJ / MJ _{Ethanol} Electricity - specify 0,037 MJ / MJ _{Ethanol} Pure CaO for processes 0,000670 kg / MJ _{Ethanol} Cycle-hexane 0,000040 kg / MJ _{Ethanol} Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Ethanol}		Steam (from CHP)	0,509 MJ / MJ _{Ethanol}
Input to CHP Fuel input / MJ steam 1,405 MJ / MJ steam Fuel input per MJ ethanol 0,715 MJ / MJ steam Fuel input per MJ ethanol 0,715 Emissions from CHP CH4 and N2O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 CHP fuel - specify 0,715 MJ / MJ_Emanol Electricity generation in CHP plant CHP net output / MJ steam 0,222 MJ / MJ_Emanol 0,113 Electricity generation in CHP plant 0,222 CHP net output / MJ steam 0,222 MJ / MJ_Emanol 0,113 Net production or consumption in ethanol plant -0,037 Electricity - specify 0,037 MJ / MJ_Emanol Electricity - specify Pure CaO for processes 0,000670 Kg / MJ_Emanol Sulphuric acid (H_2SO4) 0,000598 Kg / MJ_Emanol			
Fuel input per MJ ethanol 0,715 MJ / MJ _{Ethanol} Emissions from CHP CH4 and N20 emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Ethanol} CH4 and N20 emissions from CHP (to be further specified - gi CH4 fuel - specify 0,715 MJ / MJ _{Ethanol} Electricity qeneration in CHP plant CHP net output / MJ steam 0,222 MJ / MJ _{Ethanol} CHP net output / MJ Ethanol 0,113 MJ / MJ _{Ethanol} Net production or consumption in ethanol plant -0,037 MJ / MJ _{Ethanol} Electricity - specify 0,037 MJ / MJ _{Ethanol} Pure CaO for processes 0,000670 kg / MJ _{Ethanol} Cycle-hexane 0,000040 kg / MJ _{Ethanol} Sulphuric acid (H2SO4) 0,000598 kg / MJ _{Ethanol}			0,509 MJ / MJ _{Ethanol}
Emissions from CHP CH4 and N20 emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Emanol} CH4 and N20 emissions from CHP (to be further specified - gi CH4 production of CHP fuel - specify 0,715 MJ / MJ _{Emanol} Electricity generation in CHP plant CHP net output / MJ steam 0,222 MJ / MJ _{Emanol} CHP net output / MJ Ethanol 0,113 MJ / MJ _{Emanol} Net production or consumption in ethanol plant -0,037 MJ / MJ _{Emanol} Electricity - specify 0,037 MJ / MJ _{Emanol} Pure CaO for processes 0,000670 kg / MJ _{Emanol} Cycle-hexane 0,000040 kg / MJ _{Emanol} Sulphuric acid (H2SO4) 0,000598 kg / MJ _{Emanol}		Fuel input / MJ steam	1,405 MJ / MJ steam
CH4 and N2O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Emanol} CH4 and N2O emissions from CHP (to be further specified - gi CH4 and N2O emissions from CHP (to be further specified - gi CH7 fuel - specify 0,715 MJ / MJ _{Emanol} Electricity generation in CHP plant CHP net output / MJ steam 0,222 MJ / MJ _{Emanol} CHP net output / MJ Ethanol 0,113 MJ / MJ _{Emanol} Net production or consumption in ethanol plant -0,037 MJ / MJ _{Emanol} Electricity - specify 0,037 MJ / MJ _{Emanol} Pure CaO for processes 0,000670 kg / MJ _{Emanol} Cycle-hexane 0,000040 kg / MJ _{Emanol} Sulphuric acid (H2SO4) 0,000598 kg / MJ _{Emanol}		Fuel input per MJ ethanol	0,715 MJ / MJ _{Ethanol}
CHP fuel - specify 0,715 MJ / MJ _{Emanol} CHP fuel - specify 0,715 MJ / MJ _{Emanol} Electricity qeneration in CHP plant CHP net output / MJ steam 0,222 MJ / MJ _{Emanol} CHP net output / MJ steam 0,222 MJ / MJ _{Emanol} CHP net output / MJ steam 0,113 MJ / MJ _{Emanol} CHP net output / MJ Ethanol Net production or consumption in ethanol plant -0,037 MJ / MJ _{Emanol} Electricity - specify 0,000670 kg / MJ _{Emanol} Pure CaO for processes 0,000670 kg / MJ _{Emanol} Cycle-hexane Sulphuric acid (H ₂ SO ₄)		Emissions from CHP	
CH4 and N2O emissions from CHP (to be further specified - gi CHP fuel - specify 0,715 MJ / MJ _{Ethanol} Electricity generation in CHP plant CHP net output / MJ steam 0,222 MJ / MJ _{Ethanol} CHP net output / MJ steam 0,222 MJ / MJ _{Ethanol} Net production or consump- tion in ethanol plant -0,037 MJ / MJ _{Ethanol} Electricity - specify 0,037 MJ / MJ _{Ethanol} Pure CaO for processes 0,000670 kg / MJ _{Ethanol} Cycle-hexane 0,000040 kg / MJ _{Ethanol} Sulphuric acid (H2SO4) 0,000598 kg / MJ _{Ethanol}		CH_4 and N_2O emissions from	CHP (to be further specified - give
CHP fuel - specify 0,715 MJ / MJ _{Ethanol} Electricity generation in CHP plant 0,222 MJ / MJ _{Bteam} CHP net output / MJ steam 0,222 MJ / MJ _{Bteam} CHP net output / MJ Ethanol 0,113 MJ / MJ _{Bteam} CHP net output / MJ Ethanol 0,113 MJ / MJ _{Bteam} Net production or consumption in ethanol plant -0,037 MJ / MJ _{Ethanol} Electricity - specify 0,037 MJ / MJ _{Ethanol} Pure CaO for processes 0,000670 kg / MJ _{Ethanol} Cycle-hexane 0,00040 kg / MJ _{Ethanol} Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Ethanol}		CHP fuel - specify	0,715 MJ / MJ _{Ethanol}
Electricity generation in CHP plant CHP net output / MJ steam 0,222 MJ / MJ ateam CHP net output / MJ Ethanol 0,113 MJ / MJ ateam CHP net output / MJ Ethanol 0,113 MJ / MJ ateam Net production or consumption in ethanol plant -0,037 MJ / MJ ateam Electricity - specify 0,037 MJ / MJ ateamol Pure CaO for processes 0,000670 kg / MJ ateamol Cycle-hexane 0,000040 kg / MJ ateamol Sulphuric acid (H_2SO_4) 0,000598 kg / MJ ateamol		$\rm CH_4$ and $\rm N_2O$ emissions from	CHP (to be further specified - give
CHP net output / MJ steam 0,222 MJ / MJ steam CHP net output / MJ Ethanol 0,113 MJ / MJ steam Net production or consumption in ethanol plant -0,037 MJ / MJ steam Electricity - specify 0,037 MJ / MJ steam Pure CaO for processes 0,000670 kg / MJ steamol Cycle-hexane 0,000040 kg / MJ steamol Sulphuric acid (H_2SO_4) 0,000598 kg / MJ steamol		CHP fuel - specify	0,715 MJ / MJ _{Ethanol}
CHP net output / MJ Ethanol 0,113 MJ / MJ_Ethanol Net production or consumption in ethanol plant -0,037 MJ / MJ_Ethanol Electricity - specify 0,037 MJ / MJ_Ethanol Pure CaO for processes 0,000670 kg / MJ_Ethanol Cycle-hexane 0,000040 kg / MJ_Ethanol Sulphuric acid (H_2SO_4) 0,000598 kg / MJ_Ethanol			
Net production or consumption in ethanol plant -0,037 MJ / MJ_Ethanol Electricity - specify 0,037 MJ / MJ_Ethanol Pure CaO for processes 0,000670 kg / MJ_Ethanol Cycle-hexane 0,000040 kg / MJ_Ethanol Sulphuric acid (H2SO4) 0,000598 kg / MJ_Ethanol		· · · · · · · · · · · · · · · · · · ·	
Electricity - specify 0,037 MJ / MJ _{Ethanol} Pure CaO for processes 0,000670 kg / MJ _{Ethanol} Cycle-hexane 0,000040 kg / MJ _{Ethanol} Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Ethanol}		Net production or consump-	
Pure CaO for processes 0,000670 kg / MJ _{Ethanol} Cycle-hexane 0,000040 kg / MJ _{Ethanol} Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Ethanol}		tion in ethanol plant	
Cycle-hexane 0,000040 kg / MJ _{Ethanol} Sulphuric acid (H2SO4) 0,000598 kg / MJ _{Ethanol}		Electricity - specify	0,037 MJ / MJ _{Ethanol}
Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Ethanol}		Pure CaO for processes	0,000670 kg / MJ _{Ethanol}
Sulphuric acid (H ₂ SO ₄) 0,000598 kg / MJ _{Ethanol}		Cycle-hexane	0,000040 kg / MJ _{Ethanol}
		Sulphuric acid (H ₂ SO ₄)	
		· · · · ·	

Answer: Wrong, the excess electricity is -0,037MJ/MJEthanol = Electricity Lignite ST = Electricity taken from CHP - Electricity generation = 0,076 MJ/MJ Ethanol – 0,113 MJ/MJ Ethanol

GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.

www.biograce.net

Slide 36


- Question 10: Make the 3 exercices included in the excel sheet
- given in annexe
 - **Exercice on CHP calculation**
 - Exercice on LUC
 - **Exercice on N2O emissions**

. CO₂ storage or replacement:

→Improved agricultural management (soil organic carbon accumulation) →CO2 capture and geological storage →CO2 capture and replacement

Slide 38 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL

September 10th and 11th, 2012, at Agency NL.

Improved agricultural management – Issues for biofuels

Agricultural management & LUC:

- The impacts of Improved agricultural management are
- included in the Land use change impacts.

Issues that are similar to the Land Use Change's:

- As for LUC, the value of improved agricultural management is
- critical for a biofuel classification as a renewable energy or not.

Slide 40 • GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.

What do CO₂ storage and replacement account for?

• CO₂ capture and geological storage (CCS):

Emission saving from carbon capture and geological storage e_{ccs}, that have not already been accounted for in e_p, shall be limited to emissions avoided through the capture and sequestration of emitted CO₂ directly related to the extraction, transport, processing and distribution of fuel. (in the RED Directive, Annex V.C.14)

CO₂ capture and replacement (CCR):

Emission saving from carbon capture and replacement, eccr, shall be limited to emissions avoided through the capture of CO₂ of which the carbon originates from biomass and which is used to replace fossil-derived CO₂ used in commercial products and services. (in the RED Directive, Annex V.C.15)

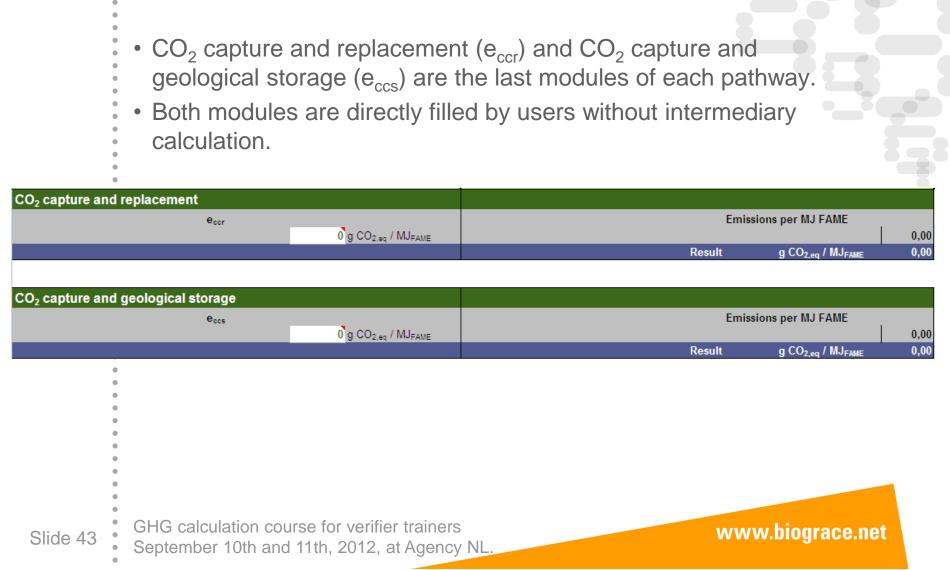
<u>Example of CO₂ replacement</u>: use of captured CO2 to replace CO2 to greenhouses, that originally was produced by burning natural gas.

GHG calculation course for verifier trainers Slide 41 September 10th and 11th, 2012, at Agency NL.

BIOGRACE II

Harmonised Greenhouse Gas Calculations

for Electricity, Heating and Cooling from Biomass



- The RED Directive mentions a credit for CO₂ avoided by CCS and CCR, in Annex V.C.14 and Annex V.C.15.
- However, no supporting methodology is proposed in the Directive.
- CO₂ capture involves additional energy and possibly CO₂ emissions. Thus the amount of CO₂ avoided is not the same as the CO_2 captured.

BIOGRACE II

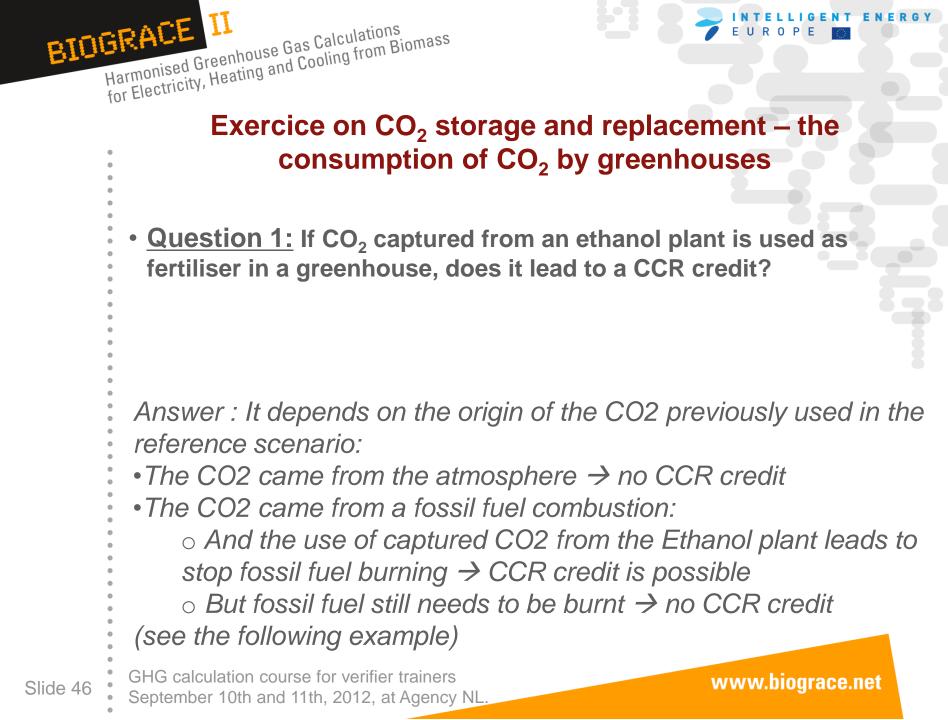
Harmonised Greenhouse Gas Calculations

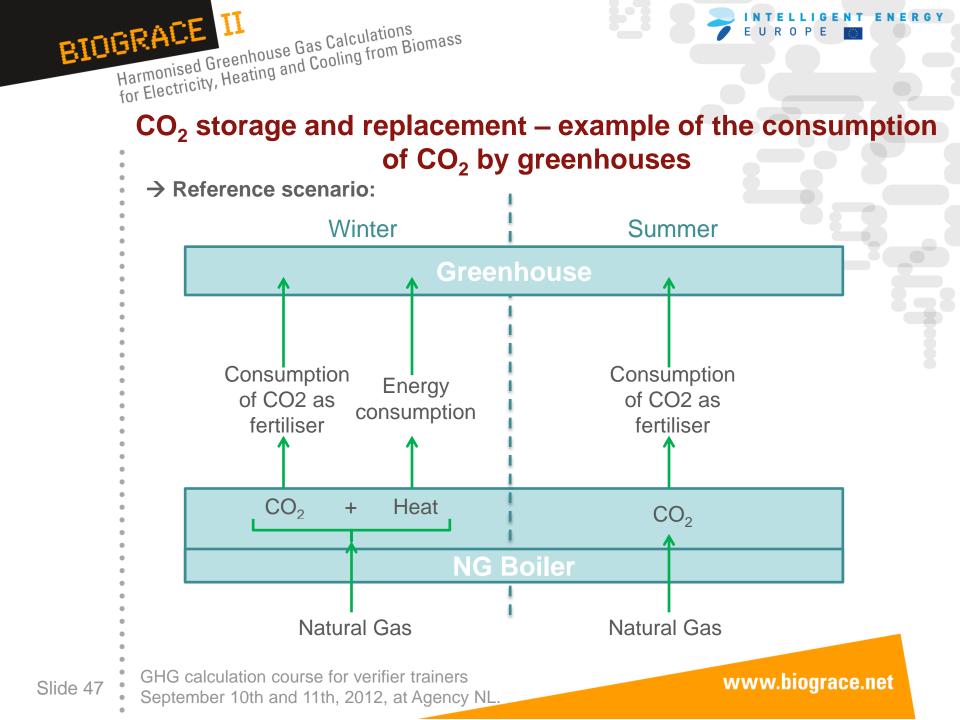
CO₂ storage and replacement – calculation sheet

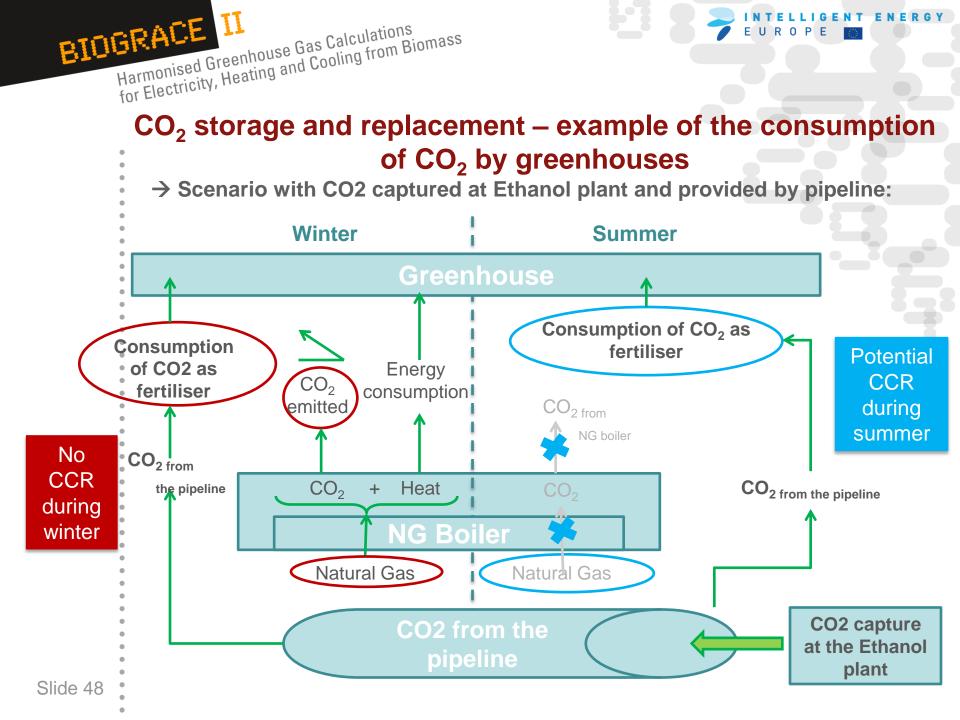
Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

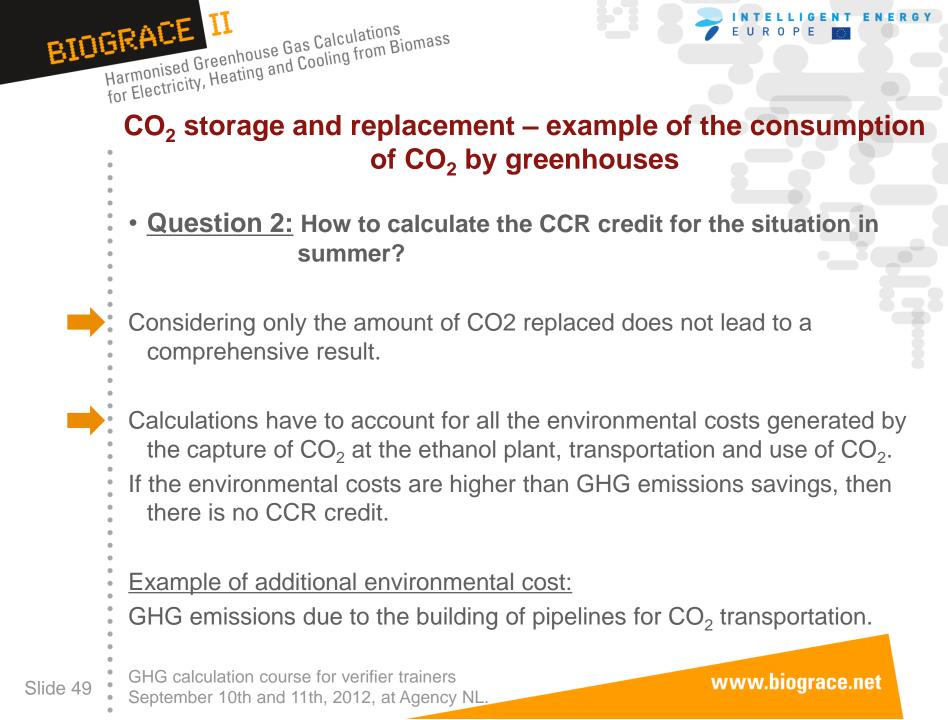
BIOGRACE II

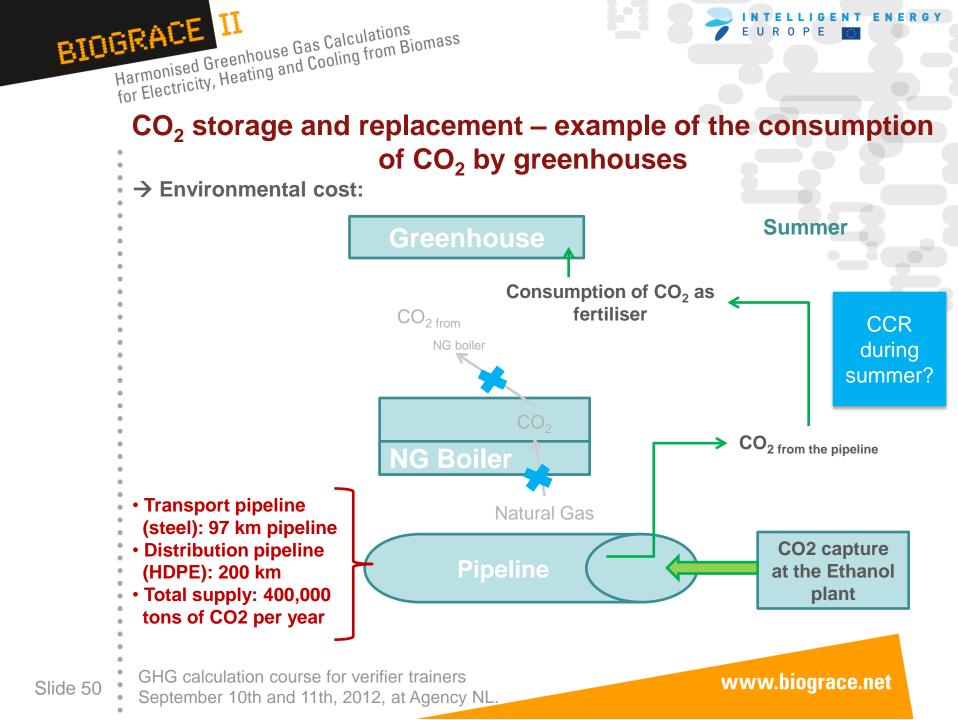
CO₂ storage and replacement – calculation sheet


- The white cells have to be filled with a positive value.
- The credit from the CO₂ storage or replacement is automatically deducted in the upper part of the sheet.


•			-			-		
		A	В	С	D	E		
	:	Production of Et	hanol from Sugarcane					
		Overview Results	5					
		All results in	Non- allocated	Allocation	Allocated	Total		
		g CO _{2,eq} / MJ _{Ethanol}	results	factor	results			
		ec				14,5		
		7 Cultivation of sugarcane 8 Transport of vinasse and filt	14,33 0,14	100% 100%	14,33 0,14			
		Processing e _p	0,14	100%	0,14	0,9		
	1	0 Ethanol plant	0,85	100%	0,85			
	1	1 Transport e _{td}				9,0		
	1	2 Transport of sugarcane 3 Transport of ethanol	0,85 7,73	100%	0,85			
		4 Filling station	0.44	100% 100%	7,73 0,44			
		5 Land use change e _l	143,5	100%	143,5	143,5		
		6 Bonus (restored degrade		100,0%	0,0	0,0		
		$7 e_{sca} + e_{ccr} + e_{ccs}$	100,0	100%	100,0	100,0		
	1	Totals	=SOMME(B7:B16)-B17			67.8		
	1	9	T 1 1	0.55		When using this		
	2	0 Calculation per p	Calculation per phase Track changes: OFF The rules are inc					
	1	74						
	1	75 CO ₂ capture and rep						
		76 e _{ccr}		Emissio	ons per MJ ethanol			
		77	50 g CO _{2,eq} / MJ _{Ethanol}			50,00	/ /	
		78		Result	g CO _{2,eq} / MJ _{Eth}	anol 50,00		
		30						
		CO ₂ capture and geo	ological storage					
		32 e _{ccs}		Emissio	ons per MJ ethanol			
	1	33	50 g CO _{2,eq} / MJ _{Ethanol}			50,00		
	1:	34		Result	g CO _{2,eq} / MJ _{Eth}	anol 50,00		
GHG ca	alculation course	e for verifier	trainers				www.biogra	nce net
Sont	ombor 10th and 11	th 2012 of					www.biogra	
Sehre	mber 10th and 11	ui, zuiz, al	Agency NL.					




5. Exercice and examples on CO₂ storage or replacement


Slide 45 GHG calculation course for verifier trainers September 10th and 11th, 2012, at Agency NL.

BioGrace – partners and contact

Project coordinator

Agentschap NL (Agency NL)

John Neeft

- Project partners
 - AEBIOM, Europe (Jean-Marc Jossart)
 - BE2020, Austria (Nikolaus Ludwiczek)
 - BIO IS, France (Perrine Lavelle)
 - IFEU, Germany (Horst Fehrenbach)
 - STEM, Sweden (Anders Dahlberg)
 - VREG, Belgium (Jimmy Loodts)

bio<mark>energy</mark>2020

Project website: w

www.BioGrace.net

